gp:[N,k,chi] = [19110,2,Mod(1,19110)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(19110, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("19110.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage:traces = [1,-1,1,1,-1,-1,0,-1,1,1,2,1,-1,0,-1,1,-6,-1,-2,-1,0,-2,4,-1,
1,1,1,0,-4,1,0,-1,2,6,0,1,-2,2,-1,1,6,0,0,2,-1,-4,-8,1,0,-1,-6,-1,10,-1,
-2,0,-2,4,8,-1,-4,0,0,1,1,-2,2,-6,4,0,8,-1,14,2,1,-2,0,1,-8,-1,1,-6,-14,
0,6,0,-4,-2,6,1,0,4,0,8,2,-1,-6,0,2,1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
gp:f = lf[1] \\ Warning: the index may be different
sage:f.q_expansion() # note that sage often uses an isomorphic number field
gp:mfcoefs(f, 20)
\( p \) |
Sign
|
\(2\) |
\( +1 \) |
\(3\) |
\( -1 \) |
\(5\) |
\( +1 \) |
\(7\) |
\( -1 \) |
\(13\) |
\( +1 \) |
Inner twists of this newform have not been computed.
Twists of this newform have not been computed.