Properties

Label 190.4.f
Level $190$
Weight $4$
Character orbit 190.f
Rep. character $\chi_{190}(37,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $60$
Newform subspaces $1$
Sturm bound $120$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 190 = 2 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 190.f (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 95 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(120\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(190, [\chi])\).

Total New Old
Modular forms 188 60 128
Cusp forms 172 60 112
Eisenstein series 16 0 16

Trace form

\( 60 q + 16 q^{5} + 8 q^{7} - 56 q^{11} - 960 q^{16} + 320 q^{17} + 588 q^{23} + 80 q^{25} - 304 q^{26} + 32 q^{28} + 96 q^{30} - 1448 q^{35} + 2160 q^{36} - 152 q^{38} + 1216 q^{42} - 88 q^{43} - 2656 q^{45}+ \cdots - 4 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(190, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
190.4.f.a 190.f 95.g $60$ $11.210$ None 190.4.f.a \(0\) \(0\) \(16\) \(8\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{4}^{\mathrm{old}}(190, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(190, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(95, [\chi])\)\(^{\oplus 2}\)