Properties

Label 19.9.b
Level $19$
Weight $9$
Character orbit 19.b
Rep. character $\chi_{19}(18,\cdot)$
Character field $\Q$
Dimension $13$
Newform subspaces $2$
Sturm bound $15$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 19 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 19.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 19 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(15\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(19, [\chi])\).

Total New Old
Modular forms 15 15 0
Cusp forms 13 13 0
Eisenstein series 2 2 0

Trace form

\( 13 q - 1318 q^{4} - 281 q^{5} + 986 q^{6} + 4213 q^{7} - 34145 q^{9} + 16039 q^{11} + 34650 q^{16} - 206423 q^{17} - 166985 q^{19} + 212500 q^{20} + 817384 q^{23} - 1485226 q^{24} + 790240 q^{25} + 2423070 q^{26}+ \cdots - 223903117 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{9}^{\mathrm{new}}(19, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
19.9.b.a 19.b 19.b $1$ $7.740$ \(\Q\) \(\Q(\sqrt{-19}) \) 19.9.b.a \(0\) \(0\) \(-289\) \(527\) $\mathrm{U}(1)[D_{2}]$ \(q+2^{8}q^{4}-17^{2}q^{5}+527q^{7}+3^{8}q^{9}+\cdots\)
19.9.b.b 19.b 19.b $12$ $7.740$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 19.9.b.b \(0\) \(0\) \(8\) \(3686\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}-\beta _{3}q^{3}+(-131+\beta _{2})q^{4}+\cdots\)