Properties

Label 19.6.c
Level $19$
Weight $6$
Character orbit 19.c
Rep. character $\chi_{19}(7,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $16$
Newform subspaces $1$
Sturm bound $10$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 19.c (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 19 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 1 \)
Sturm bound: \(10\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(19, [\chi])\).

Total New Old
Modular forms 20 20 0
Cusp forms 16 16 0
Eisenstein series 4 4 0

Trace form

\( 16 q + 3 q^{2} + 28 q^{3} - 155 q^{4} + 10 q^{5} + 149 q^{6} + 208 q^{7} - 78 q^{8} - 616 q^{9} + 580 q^{10} + 632 q^{11} - 2238 q^{12} + 786 q^{13} + 2054 q^{14} + 796 q^{15} - 3779 q^{16} - 746 q^{17}+ \cdots + 163952 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(19, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
19.6.c.a 19.c 19.c $16$ $3.047$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 19.6.c.a \(3\) \(28\) \(10\) \(208\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{1}-\beta _{3})q^{2}+(3+3\beta _{2}+\beta _{5})q^{3}+\cdots\)