Properties

Label 19.13
Level 19
Weight 13
Dimension 171
Nonzero newspaces 3
Newform subspaces 4
Sturm bound 390
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 19 \)
Weight: \( k \) = \( 13 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 4 \)
Sturm bound: \(390\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{13}(\Gamma_1(19))\).

Total New Old
Modular forms 189 189 0
Cusp forms 171 171 0
Eisenstein series 18 18 0

Trace form

\( 171 q - 9 q^{2} - 9 q^{3} - 9 q^{4} - 9 q^{5} - 9 q^{6} - 9 q^{7} - 9 q^{8} - 9 q^{9} - 9 q^{10} - 9 q^{11} - 9 q^{12} - 5100489 q^{13} - 19948041 q^{14} + 57316887 q^{15} - 17031177 q^{16} - 52747209 q^{17}+ \cdots + 151307974539 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{13}^{\mathrm{new}}(\Gamma_1(19))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
19.13.b \(\chi_{19}(18, \cdot)\) 19.13.b.a 1 1
19.13.b.b 18
19.13.d \(\chi_{19}(8, \cdot)\) 19.13.d.a 38 2
19.13.f \(\chi_{19}(2, \cdot)\) 19.13.f.a 114 6