Defining parameters
| Level: | \( N \) | \(=\) | \( 1848 = 2^{3} \cdot 3 \cdot 7 \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 1 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1848.ce (of order \(6\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 1848 \) |
| Character field: | \(\Q(\zeta_{6})\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(384\) | ||
| Trace bound: | \(6\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(1848, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 24 | 24 | 0 |
| Cusp forms | 8 | 8 | 0 |
| Eisenstein series | 16 | 16 | 0 |
The following table gives the dimensions of subspaces with specified projective image type.
| \(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
|---|---|---|---|---|
| Dimension | 8 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(1848, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
| 1848.1.ce.a | $4$ | $0.922$ | \(\Q(\zeta_{12})\) | $D_{6}$ | \(\Q(\sqrt{-6}) \) | None | \(0\) | \(0\) | \(0\) | \(2\) | \(q-\zeta_{12}q^{2}-\zeta_{12}^{5}q^{3}+\zeta_{12}^{2}q^{4}+\zeta_{12}q^{5}+\cdots\) |
| 1848.1.ce.b | $4$ | $0.922$ | \(\Q(\zeta_{12})\) | $D_{6}$ | \(\Q(\sqrt{-6}) \) | None | \(0\) | \(0\) | \(0\) | \(-2\) | \(q+\zeta_{12}q^{2}-\zeta_{12}^{5}q^{3}+\zeta_{12}^{2}q^{4}+\zeta_{12}q^{5}+\cdots\) |