Properties

Label 184.3.g
Level $184$
Weight $3$
Character orbit 184.g
Rep. character $\chi_{184}(139,\cdot)$
Character field $\Q$
Dimension $44$
Newform subspaces $1$
Sturm bound $72$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 184 = 2^{3} \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 184.g (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(72\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(184, [\chi])\).

Total New Old
Modular forms 50 44 6
Cusp forms 46 44 2
Eisenstein series 4 0 4

Trace form

\( 44 q - 3 q^{6} + 15 q^{8} + 132 q^{9} + 26 q^{10} - 19 q^{12} - 8 q^{14} - 16 q^{16} - 8 q^{17} - 57 q^{18} + 40 q^{20} + 44 q^{22} - 88 q^{24} - 244 q^{25} + 19 q^{26} - 48 q^{27} + 6 q^{28} + 86 q^{30}+ \cdots + 256 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(184, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
184.3.g.a 184.g 8.d $44$ $5.014$ None 184.3.g.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{3}^{\mathrm{old}}(184, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(184, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 2}\)