gp:[N,k,chi] = [18150,2,Mod(1,18150)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("18150.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(18150, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage:traces = [1,1,-1,1,0,-1,3,1,1,0,0,-1,4,3,0,1,-7,1,-5,0,-3,0,1,-1,0,4,-1,
3,10,0,2,1,0,-7,0,1,7,-5,-4,0,3,-3,4,0,0,1,-13,-1,2,0,7,4,-4,-1,0,3,5,
10,-5,0,-12,2,3,1,0,0,12,-7,-1,0,-3,1,4,7,0,-5,0,-4,15,0,1,3,14,-3,0,4,
-10,0,0,0,12,1,-2,-13,0,-1,7,2,0,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
gp:f = lf[1] \\ Warning: the index may be different
sage:f.q_expansion() # note that sage often uses an isomorphic number field
gp:mfcoefs(f, 20)
\( p \) |
Sign
|
\(2\) |
\( -1 \) |
\(3\) |
\( +1 \) |
\(5\) |
\( -1 \) |
\(11\) |
\( -1 \) |
Inner twists of this newform have not been computed.
Twists of this newform have not been computed.