Properties

Label 1800.3.cr
Level $1800$
Weight $3$
Character orbit 1800.cr
Rep. character $\chi_{1800}(37,\cdot)$
Character field $\Q(\zeta_{20})$
Dimension $2384$
Sturm bound $1080$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1800.cr (of order \(20\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 200 \)
Character field: \(\Q(\zeta_{20})\)
Sturm bound: \(1080\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(1800, [\chi])\).

Total New Old
Modular forms 5824 2416 3408
Cusp forms 5696 2384 3312
Eisenstein series 128 32 96

Trace form

\( 2384 q + 8 q^{2} - 10 q^{4} - 16 q^{7} + 2 q^{8} + 10 q^{14} - 6 q^{16} + 24 q^{17} - 34 q^{20} + 10 q^{22} + 16 q^{23} + 8 q^{25} + 16 q^{26} - 110 q^{28} - 12 q^{31} - 2 q^{32} - 10 q^{34} - 404 q^{38}+ \cdots + 176 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(1800, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{3}^{\mathrm{old}}(1800, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(1800, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(200, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(600, [\chi])\)\(^{\oplus 2}\)