Properties

Label 1800.3.bx
Level $1800$
Weight $3$
Character orbit 1800.bx
Rep. character $\chi_{1800}(19,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $1192$
Sturm bound $1080$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1800.bx (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 200 \)
Character field: \(\Q(\zeta_{10})\)
Sturm bound: \(1080\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(1800, [\chi])\).

Total New Old
Modular forms 2912 1208 1704
Cusp forms 2848 1192 1656
Eisenstein series 64 16 48

Trace form

\( 1192 q + 5 q^{2} - 3 q^{4} + 20 q^{8} - 13 q^{10} + 6 q^{11} + 45 q^{14} + 57 q^{16} + 10 q^{17} - 6 q^{19} - 27 q^{20} - 80 q^{22} - 20 q^{25} + 50 q^{26} - 85 q^{28} + 69 q^{34} + 256 q^{35} + 485 q^{38}+ \cdots + 200 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(1800, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{3}^{\mathrm{old}}(1800, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(1800, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(200, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(600, [\chi])\)\(^{\oplus 2}\)