Properties

Label 1792.2.f.k.1791.1
Level $1792$
Weight $2$
Character 1792.1791
Analytic conductor $14.309$
Analytic rank $0$
Dimension $8$
CM discriminant -56
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1792,2,Mod(1791,1792)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1792, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1792.1791");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1792 = 2^{8} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1792.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.3091920422\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.629407744.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{6} + 2x^{4} - 8x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: no (minimal twist has level 448)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 1791.1
Root \(-1.38255 + 0.297594i\) of defining polynomial
Character \(\chi\) \(=\) 1792.1791
Dual form 1792.2.f.k.1791.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.36028 q^{3} -2.16991i q^{5} -2.64575i q^{7} +8.29150 q^{9} +O(q^{10})\) \(q-3.36028 q^{3} -2.16991i q^{5} -2.64575i q^{7} +8.29150 q^{9} +4.55066i q^{13} +7.29150i q^{15} -0.979531 q^{19} +8.89047i q^{21} +6.00000i q^{23} +0.291503 q^{25} -17.7809 q^{27} -5.74103 q^{35} -15.2915i q^{39} -17.9918i q^{45} -7.00000 q^{49} +3.29150 q^{57} +14.4207 q^{59} +15.6110i q^{61} -21.9373i q^{63} +9.87451 q^{65} -20.1617i q^{69} +15.8745i q^{71} -0.979531 q^{75} +5.29150i q^{79} +34.8745 q^{81} +1.40122 q^{83} +12.0399 q^{91} +2.12549i q^{95} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 24 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 24 q^{9} - 40 q^{25} - 56 q^{49} - 16 q^{57} - 48 q^{65} + 152 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1792\mathbb{Z}\right)^\times\).

\(n\) \(1023\) \(1025\) \(1541\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.36028 −1.94006 −0.970030 0.242984i \(-0.921874\pi\)
−0.970030 + 0.242984i \(0.921874\pi\)
\(4\) 0 0
\(5\) − 2.16991i − 0.970412i −0.874400 0.485206i \(-0.838745\pi\)
0.874400 0.485206i \(-0.161255\pi\)
\(6\) 0 0
\(7\) − 2.64575i − 1.00000i
\(8\) 0 0
\(9\) 8.29150 2.76383
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) 4.55066i 1.26213i 0.775732 + 0.631063i \(0.217381\pi\)
−0.775732 + 0.631063i \(0.782619\pi\)
\(14\) 0 0
\(15\) 7.29150i 1.88266i
\(16\) 0 0
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) −0.979531 −0.224720 −0.112360 0.993668i \(-0.535841\pi\)
−0.112360 + 0.993668i \(0.535841\pi\)
\(20\) 0 0
\(21\) 8.89047i 1.94006i
\(22\) 0 0
\(23\) 6.00000i 1.25109i 0.780189 + 0.625543i \(0.215123\pi\)
−0.780189 + 0.625543i \(0.784877\pi\)
\(24\) 0 0
\(25\) 0.291503 0.0583005
\(26\) 0 0
\(27\) −17.7809 −3.42194
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −5.74103 −0.970412
\(36\) 0 0
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) − 15.2915i − 2.44860i
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) − 17.9918i − 2.68206i
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 3.29150 0.435970
\(58\) 0 0
\(59\) 14.4207 1.87741 0.938705 0.344721i \(-0.112026\pi\)
0.938705 + 0.344721i \(0.112026\pi\)
\(60\) 0 0
\(61\) 15.6110i 1.99879i 0.0347968 + 0.999394i \(0.488922\pi\)
−0.0347968 + 0.999394i \(0.511078\pi\)
\(62\) 0 0
\(63\) − 21.9373i − 2.76383i
\(64\) 0 0
\(65\) 9.87451 1.22478
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) − 20.1617i − 2.42718i
\(70\) 0 0
\(71\) 15.8745i 1.88396i 0.335673 + 0.941979i \(0.391036\pi\)
−0.335673 + 0.941979i \(0.608964\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) −0.979531 −0.113107
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 5.29150i 0.595341i 0.954669 + 0.297670i \(0.0962096\pi\)
−0.954669 + 0.297670i \(0.903790\pi\)
\(80\) 0 0
\(81\) 34.8745 3.87495
\(82\) 0 0
\(83\) 1.40122 0.153804 0.0769020 0.997039i \(-0.475497\pi\)
0.0769020 + 0.997039i \(0.475497\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 12.0399 1.26213
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.12549i 0.218071i
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 17.9918i − 1.79025i −0.445815 0.895125i \(-0.647086\pi\)
0.445815 0.895125i \(-0.352914\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 19.2915 1.88266
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 15.8745 1.49335 0.746674 0.665190i \(-0.231650\pi\)
0.746674 + 0.665190i \(0.231650\pi\)
\(114\) 0 0
\(115\) 13.0194 1.21407
\(116\) 0 0
\(117\) 37.7318i 3.48831i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 11.0000 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 11.4821i − 1.02699i
\(126\) 0 0
\(127\) 2.00000i 0.177471i 0.996055 + 0.0887357i \(0.0282826\pi\)
−0.996055 + 0.0887357i \(0.971717\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 18.7605 1.63911 0.819555 0.573000i \(-0.194221\pi\)
0.819555 + 0.573000i \(0.194221\pi\)
\(132\) 0 0
\(133\) 2.59160i 0.224720i
\(134\) 0 0
\(135\) 38.5830i 3.32070i
\(136\) 0 0
\(137\) −18.0000 −1.53784 −0.768922 0.639343i \(-0.779207\pi\)
−0.768922 + 0.639343i \(0.779207\pi\)
\(138\) 0 0
\(139\) 19.1822 1.62701 0.813505 0.581558i \(-0.197557\pi\)
0.813505 + 0.581558i \(0.197557\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 23.5220 1.94006
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) − 10.0000i − 0.813788i −0.913475 0.406894i \(-0.866612\pi\)
0.913475 0.406894i \(-0.133388\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 17.5701i − 1.40225i −0.713040 0.701123i \(-0.752682\pi\)
0.713040 0.701123i \(-0.247318\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 15.8745 1.25109
\(162\) 0 0
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −7.70850 −0.592961
\(170\) 0 0
\(171\) −8.12179 −0.621089
\(172\) 0 0
\(173\) 9.31216i 0.707991i 0.935247 + 0.353995i \(0.115177\pi\)
−0.935247 + 0.353995i \(0.884823\pi\)
\(174\) 0 0
\(175\) − 0.771243i − 0.0583005i
\(176\) 0 0
\(177\) −48.4575 −3.64229
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) 24.7124i 1.83686i 0.395589 + 0.918428i \(0.370540\pi\)
−0.395589 + 0.918428i \(0.629460\pi\)
\(182\) 0 0
\(183\) − 52.4575i − 3.87777i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 47.0440i 3.42194i
\(190\) 0 0
\(191\) − 15.8745i − 1.14864i −0.818631 0.574320i \(-0.805267\pi\)
0.818631 0.574320i \(-0.194733\pi\)
\(192\) 0 0
\(193\) −26.4575 −1.90445 −0.952227 0.305392i \(-0.901213\pi\)
−0.952227 + 0.305392i \(0.901213\pi\)
\(194\) 0 0
\(195\) −33.1811 −2.37615
\(196\) 0 0
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 49.7490i 3.45780i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) − 53.3428i − 3.65499i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 2.41699 0.161133
\(226\) 0 0
\(227\) 25.9027 1.71922 0.859612 0.510947i \(-0.170705\pi\)
0.859612 + 0.510947i \(0.170705\pi\)
\(228\) 0 0
\(229\) − 8.46878i − 0.559633i −0.960053 0.279817i \(-0.909726\pi\)
0.960053 0.279817i \(-0.0902736\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 17.7809i − 1.15500i
\(238\) 0 0
\(239\) − 30.0000i − 1.94054i −0.242028 0.970269i \(-0.577812\pi\)
0.242028 0.970269i \(-0.422188\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) −63.8454 −4.09568
\(244\) 0 0
\(245\) 15.1894i 0.970412i
\(246\) 0 0
\(247\) − 4.45751i − 0.283625i
\(248\) 0 0
\(249\) −4.70850 −0.298389
\(250\) 0 0
\(251\) 21.5629 1.36104 0.680520 0.732730i \(-0.261754\pi\)
0.680520 + 0.732730i \(0.261754\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 15.8745i 0.978864i 0.872041 + 0.489432i \(0.162796\pi\)
−0.872041 + 0.489432i \(0.837204\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 4.97235i − 0.303169i −0.988444 0.151585i \(-0.951562\pi\)
0.988444 0.151585i \(-0.0484376\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) −40.4575 −2.44860
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 30.0000 1.78965 0.894825 0.446417i \(-0.147300\pi\)
0.894825 + 0.446417i \(0.147300\pi\)
\(282\) 0 0
\(283\) −32.2016 −1.91419 −0.957094 0.289779i \(-0.906418\pi\)
−0.957094 + 0.289779i \(0.906418\pi\)
\(284\) 0 0
\(285\) − 7.14226i − 0.423071i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 31.0112i 1.81170i 0.423603 + 0.905848i \(0.360765\pi\)
−0.423603 + 0.905848i \(0.639235\pi\)
\(294\) 0 0
\(295\) − 31.2915i − 1.82186i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −27.3040 −1.57903
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 60.4575i 3.47319i
\(304\) 0 0
\(305\) 33.8745 1.93965
\(306\) 0 0
\(307\) 13.9990 0.798964 0.399482 0.916741i \(-0.369190\pi\)
0.399482 + 0.916741i \(0.369190\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) −47.6018 −2.68206
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 1.32653i 0.0735826i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −26.4575 −1.44123 −0.720616 0.693334i \(-0.756141\pi\)
−0.720616 + 0.693334i \(0.756141\pi\)
\(338\) 0 0
\(339\) −53.3428 −2.89719
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 18.5203i 1.00000i
\(344\) 0 0
\(345\) −43.7490 −2.35537
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) − 28.6305i − 1.53255i −0.642510 0.766277i \(-0.722107\pi\)
0.642510 0.766277i \(-0.277893\pi\)
\(350\) 0 0
\(351\) − 80.9150i − 4.31892i
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 34.4462 1.82821
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 6.00000i 0.316668i 0.987386 + 0.158334i \(0.0506123\pi\)
−0.987386 + 0.158334i \(0.949388\pi\)
\(360\) 0 0
\(361\) −18.0405 −0.949501
\(362\) 0 0
\(363\) −36.9631 −1.94006
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 38.5830i 1.99242i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) − 6.72057i − 0.344305i
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −63.0405 −3.17997
\(394\) 0 0
\(395\) 11.4821 0.577726
\(396\) 0 0
\(397\) 37.7318i 1.89370i 0.321668 + 0.946852i \(0.395756\pi\)
−0.321668 + 0.946852i \(0.604244\pi\)
\(398\) 0 0
\(399\) − 8.70850i − 0.435970i
\(400\) 0 0
\(401\) 15.8745 0.792735 0.396368 0.918092i \(-0.370271\pi\)
0.396368 + 0.918092i \(0.370271\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) − 75.6744i − 3.76029i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 60.4851 2.98351
\(412\) 0 0
\(413\) − 38.1535i − 1.87741i
\(414\) 0 0
\(415\) − 3.04052i − 0.149253i
\(416\) 0 0
\(417\) −64.4575 −3.15650
\(418\) 0 0
\(419\) −12.8833 −0.629390 −0.314695 0.949193i \(-0.601902\pi\)
−0.314695 + 0.949193i \(0.601902\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 41.3029 1.99879
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 18.0000i 0.867029i 0.901146 + 0.433515i \(0.142727\pi\)
−0.901146 + 0.433515i \(0.857273\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 5.87719i − 0.281144i
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) −58.0405 −2.76383
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −30.0000 −1.41579 −0.707894 0.706319i \(-0.750354\pi\)
−0.707894 + 0.706319i \(0.750354\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 33.6028i 1.57880i
\(454\) 0 0
\(455\) − 26.1255i − 1.22478i
\(456\) 0 0
\(457\) 5.29150 0.247526 0.123763 0.992312i \(-0.460504\pi\)
0.123763 + 0.992312i \(0.460504\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 42.4933i 1.97911i 0.144154 + 0.989555i \(0.453954\pi\)
−0.144154 + 0.989555i \(0.546046\pi\)
\(462\) 0 0
\(463\) 26.4575i 1.22958i 0.788689 + 0.614792i \(0.210760\pi\)
−0.788689 + 0.614792i \(0.789240\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 11.6182 0.537627 0.268814 0.963192i \(-0.413368\pi\)
0.268814 + 0.963192i \(0.413368\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 59.0405i 2.72044i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −0.285536 −0.0131013
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) −53.3428 −2.42718
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 38.0000i 1.72194i 0.508652 + 0.860972i \(0.330144\pi\)
−0.508652 + 0.860972i \(0.669856\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 42.0000 1.88396
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) −39.0405 −1.73728
\(506\) 0 0
\(507\) 25.9027 1.15038
\(508\) 0 0
\(509\) 25.1340i 1.11405i 0.830497 + 0.557024i \(0.188057\pi\)
−0.830497 + 0.557024i \(0.811943\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 17.4170 0.768979
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) − 31.2915i − 1.37354i
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) −25.0594 −1.09577 −0.547885 0.836554i \(-0.684567\pi\)
−0.547885 + 0.836554i \(0.684567\pi\)
\(524\) 0 0
\(525\) 2.59160i 0.113107i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −13.0000 −0.565217
\(530\) 0 0
\(531\) 119.569 5.18885
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(542\) 0 0
\(543\) − 83.0405i − 3.56361i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 129.439i 5.52432i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 14.0000 0.595341
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 8.54348 0.360065 0.180032 0.983661i \(-0.442380\pi\)
0.180032 + 0.983661i \(0.442380\pi\)
\(564\) 0 0
\(565\) − 34.4462i − 1.44916i
\(566\) 0 0
\(567\) − 92.2693i − 3.87495i
\(568\) 0 0
\(569\) 47.6235 1.99648 0.998241 0.0592869i \(-0.0188827\pi\)
0.998241 + 0.0592869i \(0.0188827\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 53.3428i 2.22843i
\(574\) 0 0
\(575\) 1.74902i 0.0729390i
\(576\) 0 0
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0 0
\(579\) 88.9047 3.69475
\(580\) 0 0
\(581\) − 3.70728i − 0.153804i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 81.8745 3.38509
\(586\) 0 0
\(587\) 31.7799 1.31170 0.655849 0.754892i \(-0.272311\pi\)
0.655849 + 0.754892i \(0.272311\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 47.6235i − 1.94584i −0.231133 0.972922i \(-0.574243\pi\)
0.231133 0.972922i \(-0.425757\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 23.8690i − 0.970412i
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 47.6235 1.91725 0.958625 0.284670i \(-0.0918842\pi\)
0.958625 + 0.284670i \(0.0918842\pi\)
\(618\) 0 0
\(619\) 26.3244 1.05807 0.529034 0.848601i \(-0.322554\pi\)
0.529034 + 0.848601i \(0.322554\pi\)
\(620\) 0 0
\(621\) − 106.686i − 4.28115i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −23.4575 −0.938301
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 37.0405i 1.47456i 0.675587 + 0.737280i \(0.263890\pi\)
−0.675587 + 0.737280i \(0.736110\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 4.33981 0.172220
\(636\) 0 0
\(637\) − 31.8546i − 1.26213i
\(638\) 0 0
\(639\) 131.624i 5.20695i
\(640\) 0 0
\(641\) 15.8745 0.627005 0.313503 0.949587i \(-0.398498\pi\)
0.313503 + 0.949587i \(0.398498\pi\)
\(642\) 0 0
\(643\) −15.2640 −0.601955 −0.300978 0.953631i \(-0.597313\pi\)
−0.300978 + 0.953631i \(0.597313\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) − 40.7085i − 1.59061i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) − 30.5895i − 1.18980i −0.803801 0.594898i \(-0.797193\pi\)
0.803801 0.594898i \(-0.202807\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 5.62352 0.218071
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 26.0000 1.00223 0.501113 0.865382i \(-0.332924\pi\)
0.501113 + 0.865382i \(0.332924\pi\)
\(674\) 0 0
\(675\) −5.18319 −0.199501
\(676\) 0 0
\(677\) − 51.1729i − 1.96674i −0.181625 0.983368i \(-0.558136\pi\)
0.181625 0.983368i \(-0.441864\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −87.0405 −3.33540
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 39.0583i 1.49234i
\(686\) 0 0
\(687\) 28.4575i 1.08572i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −52.3633 −1.99199 −0.995997 0.0893857i \(-0.971510\pi\)
−0.995997 + 0.0893857i \(0.971510\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 41.6235i − 1.57887i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −20.1617 −0.762585
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −47.6018 −1.79025
\(708\) 0 0
\(709\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(710\) 0 0
\(711\) 43.8745i 1.64542i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 100.808i 3.76476i
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 109.915 4.07093
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) − 42.9150i − 1.58510i −0.609806 0.792551i \(-0.708753\pi\)
0.609806 0.792551i \(-0.291247\pi\)
\(734\) 0 0
\(735\) − 51.0405i − 1.88266i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 14.9785i 0.550249i
\(742\) 0 0
\(743\) 54.0000i 1.98107i 0.137268 + 0.990534i \(0.456168\pi\)
−0.137268 + 0.990534i \(0.543832\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 11.6182 0.425089
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 50.0000i 1.82453i 0.409605 + 0.912263i \(0.365667\pi\)
−0.409605 + 0.912263i \(0.634333\pi\)
\(752\) 0 0
\(753\) −72.4575 −2.64050
\(754\) 0 0
\(755\) −21.6991 −0.789710
\(756\) 0 0
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 65.6235i 2.36953i
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 16.4544i − 0.591824i −0.955215 0.295912i \(-0.904376\pi\)
0.955215 0.295912i \(-0.0956236\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −38.1255 −1.36076
\(786\) 0 0
\(787\) −45.2211 −1.61196 −0.805978 0.591945i \(-0.798360\pi\)
−0.805978 + 0.591945i \(0.798360\pi\)
\(788\) 0 0
\(789\) − 53.3428i − 1.89906i
\(790\) 0 0
\(791\) − 42.0000i − 1.49335i
\(792\) 0 0
\(793\) −71.0405 −2.52272
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 8.04710i − 0.285043i −0.989792 0.142521i \(-0.954479\pi\)
0.989792 0.142521i \(-0.0455210\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) − 34.4462i − 1.21407i
\(806\) 0 0
\(807\) 16.7085i 0.588167i
\(808\) 0 0
\(809\) 47.6235 1.67435 0.837177 0.546932i \(-0.184204\pi\)
0.837177 + 0.546932i \(0.184204\pi\)
\(810\) 0 0
\(811\) 48.4452 1.70114 0.850570 0.525861i \(-0.176257\pi\)
0.850570 + 0.525861i \(0.176257\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 99.8290 3.48831
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) − 26.4575i − 0.922251i −0.887335 0.461125i \(-0.847446\pi\)
0.887335 0.461125i \(-0.152554\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 1.32653i 0.0460723i 0.999735 + 0.0230361i \(0.00733328\pi\)
−0.999735 + 0.0230361i \(0.992667\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) −100.808 −3.47203
\(844\) 0 0
\(845\) 16.7267i 0.575417i
\(846\) 0 0
\(847\) − 29.1033i − 1.00000i
\(848\) 0 0
\(849\) 108.207 3.71364
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 57.8935i 1.98224i 0.132987 + 0.991118i \(0.457543\pi\)
−0.132987 + 0.991118i \(0.542457\pi\)
\(854\) 0 0
\(855\) 17.6235i 0.602712i
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) −54.3224 −1.85346 −0.926728 0.375734i \(-0.877391\pi\)
−0.926728 + 0.375734i \(0.877391\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 15.8745i − 0.540375i −0.962808 0.270187i \(-0.912914\pi\)
0.962808 0.270187i \(-0.0870856\pi\)
\(864\) 0 0
\(865\) 20.2065 0.687043
\(866\) 0 0
\(867\) −57.1248 −1.94006
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −30.3787 −1.02699
\(876\) 0 0
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) 0 0
\(879\) − 104.207i − 3.51480i
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 105.148i 3.53452i
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 5.29150 0.177471
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 91.7490 3.06341
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 53.6235 1.78251
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) − 149.179i − 4.94795i
\(910\) 0 0
\(911\) − 30.0000i − 0.993944i −0.867766 0.496972i \(-0.834445\pi\)
0.867766 0.496972i \(-0.165555\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −113.828 −3.76304
\(916\) 0 0
\(917\) − 49.6356i − 1.63911i
\(918\) 0 0
\(919\) 58.2065i 1.92006i 0.279904 + 0.960028i \(0.409697\pi\)
−0.279904 + 0.960028i \(0.590303\pi\)
\(920\) 0 0
\(921\) −47.0405 −1.55004
\(922\) 0 0
\(923\) −72.2395 −2.37779
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 6.85672 0.224720
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 58.3152i 1.90102i 0.310693 + 0.950510i \(0.399439\pi\)
−0.310693 + 0.950510i \(0.600561\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 102.081 3.32070
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 54.0000 1.74923 0.874616 0.484817i \(-0.161114\pi\)
0.874616 + 0.484817i \(0.161114\pi\)
\(954\) 0 0
\(955\) −34.4462 −1.11465
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 47.6235i 1.53784i
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 57.4103i 1.84810i
\(966\) 0 0
\(967\) − 58.0000i − 1.86515i −0.360971 0.932577i \(-0.617555\pi\)
0.360971 0.932577i \(-0.382445\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0.136153 0.00436936 0.00218468 0.999998i \(-0.499305\pi\)
0.00218468 + 0.999998i \(0.499305\pi\)
\(972\) 0 0
\(973\) − 50.7512i − 1.62701i
\(974\) 0 0
\(975\) − 4.45751i − 0.142755i
\(976\) 0 0
\(977\) 18.0000 0.575871 0.287936 0.957650i \(-0.407031\pi\)
0.287936 + 0.957650i \(0.407031\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) − 37.0405i − 1.17663i −0.808632 0.588315i \(-0.799791\pi\)
0.808632 0.588315i \(-0.200209\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 41.6499i − 1.31907i −0.751675 0.659533i \(-0.770754\pi\)
0.751675 0.659533i \(-0.229246\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1792.2.f.k.1791.1 8
4.3 odd 2 inner 1792.2.f.k.1791.7 8
7.6 odd 2 inner 1792.2.f.k.1791.8 8
8.3 odd 2 inner 1792.2.f.k.1791.2 8
8.5 even 2 inner 1792.2.f.k.1791.8 8
16.3 odd 4 448.2.e.a.223.7 yes 8
16.5 even 4 448.2.e.a.223.8 yes 8
16.11 odd 4 448.2.e.a.223.2 yes 8
16.13 even 4 448.2.e.a.223.1 8
28.27 even 2 inner 1792.2.f.k.1791.2 8
48.5 odd 4 4032.2.p.h.1567.4 8
48.11 even 4 4032.2.p.h.1567.3 8
48.29 odd 4 4032.2.p.h.1567.6 8
48.35 even 4 4032.2.p.h.1567.5 8
56.13 odd 2 CM 1792.2.f.k.1791.1 8
56.27 even 2 inner 1792.2.f.k.1791.7 8
112.13 odd 4 448.2.e.a.223.8 yes 8
112.27 even 4 448.2.e.a.223.7 yes 8
112.69 odd 4 448.2.e.a.223.1 8
112.83 even 4 448.2.e.a.223.2 yes 8
336.83 odd 4 4032.2.p.h.1567.3 8
336.125 even 4 4032.2.p.h.1567.4 8
336.251 odd 4 4032.2.p.h.1567.5 8
336.293 even 4 4032.2.p.h.1567.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
448.2.e.a.223.1 8 16.13 even 4
448.2.e.a.223.1 8 112.69 odd 4
448.2.e.a.223.2 yes 8 16.11 odd 4
448.2.e.a.223.2 yes 8 112.83 even 4
448.2.e.a.223.7 yes 8 16.3 odd 4
448.2.e.a.223.7 yes 8 112.27 even 4
448.2.e.a.223.8 yes 8 16.5 even 4
448.2.e.a.223.8 yes 8 112.13 odd 4
1792.2.f.k.1791.1 8 1.1 even 1 trivial
1792.2.f.k.1791.1 8 56.13 odd 2 CM
1792.2.f.k.1791.2 8 8.3 odd 2 inner
1792.2.f.k.1791.2 8 28.27 even 2 inner
1792.2.f.k.1791.7 8 4.3 odd 2 inner
1792.2.f.k.1791.7 8 56.27 even 2 inner
1792.2.f.k.1791.8 8 7.6 odd 2 inner
1792.2.f.k.1791.8 8 8.5 even 2 inner
4032.2.p.h.1567.3 8 48.11 even 4
4032.2.p.h.1567.3 8 336.83 odd 4
4032.2.p.h.1567.4 8 48.5 odd 4
4032.2.p.h.1567.4 8 336.125 even 4
4032.2.p.h.1567.5 8 48.35 even 4
4032.2.p.h.1567.5 8 336.251 odd 4
4032.2.p.h.1567.6 8 48.29 odd 4
4032.2.p.h.1567.6 8 336.293 even 4