Properties

Label 177.3.g.a.10.15
Level $177$
Weight $3$
Character 177.10
Analytic conductor $4.823$
Analytic rank $0$
Dimension $560$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 177 = 3 \cdot 59 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 177.g (of order \(58\), degree \(28\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.82290067918\)
Analytic rank: \(0\)
Dimension: \(560\)
Relative dimension: \(20\) over \(\Q(\zeta_{58})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{58}]$

Embedding invariants

Embedding label 10.15
Character \(\chi\) \(=\) 177.10
Dual form 177.3.g.a.124.15

$q$-expansion

\(f(q)\) \(=\) \(q+(1.89981 + 0.756953i) q^{2} +(-1.72190 - 0.187268i) q^{3} +(0.132311 + 0.125332i) q^{4} +(3.62948 - 4.27295i) q^{5} +(-3.12952 - 1.65917i) q^{6} +(-2.21876 - 1.33498i) q^{7} +(-3.27829 - 7.08590i) q^{8} +(2.92986 + 0.644911i) q^{9} +O(q^{10})\) \(q+(1.89981 + 0.756953i) q^{2} +(-1.72190 - 0.187268i) q^{3} +(0.132311 + 0.125332i) q^{4} +(3.62948 - 4.27295i) q^{5} +(-3.12952 - 1.65917i) q^{6} +(-2.21876 - 1.33498i) q^{7} +(-3.27829 - 7.08590i) q^{8} +(2.92986 + 0.644911i) q^{9} +(10.1297 - 5.37045i) q^{10} +(14.9816 + 0.812281i) q^{11} +(-0.204356 - 0.240587i) q^{12} +(-3.95392 - 17.9628i) q^{13} +(-3.20470 - 4.21571i) q^{14} +(-7.04977 + 6.67790i) q^{15} +(-0.903891 - 16.6713i) q^{16} +(11.3882 - 6.85207i) q^{17} +(5.07801 + 3.44297i) q^{18} +(-7.70702 + 27.7582i) q^{19} +(1.01576 - 0.110471i) q^{20} +(3.57048 + 2.71421i) q^{21} +(27.8474 + 12.8836i) q^{22} +(-12.2459 + 8.30293i) q^{23} +(4.31792 + 12.8151i) q^{24} +(-1.04046 - 6.34651i) q^{25} +(6.08532 - 37.1188i) q^{26} +(-4.92415 - 1.65914i) q^{27} +(-0.126251 - 0.454716i) q^{28} +(-4.15885 - 10.4379i) q^{29} +(-18.4481 + 7.35038i) q^{30} +(47.1041 - 13.0784i) q^{31} +(0.930361 - 2.76121i) q^{32} +(-25.6447 - 4.20424i) q^{33} +(26.8222 - 4.39727i) q^{34} +(-13.7573 + 4.63536i) q^{35} +(0.306826 + 0.452535i) q^{36} +(-14.9472 + 32.3079i) q^{37} +(-35.6535 + 46.9014i) q^{38} +(3.44438 + 31.6706i) q^{39} +(-42.1762 - 11.7102i) q^{40} +(-20.4051 + 30.0953i) q^{41} +(4.72870 + 7.85916i) q^{42} +(13.2243 - 0.717002i) q^{43} +(1.88044 + 1.98515i) q^{44} +(13.3895 - 10.1785i) q^{45} +(-29.5498 + 6.50440i) q^{46} +(-34.0965 + 28.9618i) q^{47} +(-1.56559 + 28.8755i) q^{48} +(-19.8113 - 37.3681i) q^{49} +(2.82734 - 12.8447i) q^{50} +(-20.8925 + 9.66592i) q^{51} +(1.72817 - 2.87224i) q^{52} +(-20.9578 + 39.5306i) q^{53} +(-8.09905 - 6.87940i) q^{54} +(57.8464 - 61.0677i) q^{55} +(-2.18583 + 20.0984i) q^{56} +(18.4689 - 46.3535i) q^{57} -22.9781i q^{58} +(35.4693 - 47.1480i) q^{59} -1.76972 q^{60} +(68.9967 + 27.4908i) q^{61} +(99.3885 + 10.8092i) q^{62} +(-5.63972 - 5.34222i) q^{63} +(-39.3769 + 46.3580i) q^{64} +(-91.1049 - 48.3008i) q^{65} +(-45.5376 - 27.3991i) q^{66} +(-16.4442 - 35.5437i) q^{67} +(2.36558 + 0.520703i) q^{68} +(22.6411 - 12.0035i) q^{69} +(-29.6449 - 1.60730i) q^{70} +(77.8248 + 91.6224i) q^{71} +(-5.03515 - 22.8749i) q^{72} +(17.4449 + 22.9484i) q^{73} +(-52.8525 + 50.0645i) q^{74} +(0.603065 + 11.1229i) q^{75} +(-4.49872 + 2.70679i) q^{76} +(-32.1563 - 21.8025i) q^{77} +(-17.4295 + 62.7752i) q^{78} +(143.847 - 15.6443i) q^{79} +(-74.5163 - 56.6458i) q^{80} +(8.16818 + 3.77900i) q^{81} +(-61.5466 + 41.7296i) q^{82} +(2.37138 + 7.03801i) q^{83} +(0.132238 + 0.806616i) q^{84} +(12.0548 - 73.5308i) q^{85} +(25.6664 + 8.64802i) q^{86} +(5.20642 + 18.7518i) q^{87} +(-43.3584 - 108.821i) q^{88} +(-37.0843 + 14.7757i) q^{89} +(33.1422 - 9.20188i) q^{90} +(-15.2073 + 45.1336i) q^{91} +(-2.66090 - 0.436232i) q^{92} +(-83.5576 + 13.6986i) q^{93} +(-86.6996 + 29.2125i) q^{94} +(90.6369 + 133.679i) q^{95} +(-2.11907 + 4.58030i) q^{96} +(84.0542 - 110.571i) q^{97} +(-9.35180 - 85.9884i) q^{98} +(43.3703 + 12.0417i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 560q + 40q^{4} + 8q^{7} - 60q^{9} + O(q^{10}) \) \( 560q + 40q^{4} + 8q^{7} - 60q^{9} + 24q^{12} - 24q^{15} + 8q^{16} - 16q^{17} + 60q^{19} + 164q^{20} - 40q^{22} - 100q^{25} + 156q^{26} - 200q^{28} + 60q^{29} + 32q^{35} + 120q^{36} - 28q^{41} - 1572q^{46} - 638q^{47} + 96q^{48} - 1328q^{49} - 1856q^{50} + 24q^{51} - 1392q^{52} - 572q^{53} - 522q^{55} - 928q^{56} - 24q^{57} + 268q^{59} + 72q^{60} + 348q^{61} + 472q^{62} + 24q^{63} + 2580q^{64} + 1218q^{65} + 120q^{66} + 1044q^{67} + 1936q^{68} + 2784q^{70} + 1416q^{71} + 870q^{73} + 1752q^{74} - 240q^{75} - 120q^{76} + 468q^{78} + 420q^{79} - 376q^{80} - 180q^{81} - 168q^{84} + 348q^{85} - 232q^{86} - 144q^{87} + 212q^{88} - 152q^{94} - 788q^{95} - 3306q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/177\mathbb{Z}\right)^\times\).

\(n\) \(61\) \(119\)
\(\chi(n)\) \(e\left(\frac{7}{58}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.89981 + 0.756953i 0.949904 + 0.378476i 0.793058 0.609147i \(-0.208488\pi\)
0.156846 + 0.987623i \(0.449867\pi\)
\(3\) −1.72190 0.187268i −0.573966 0.0624225i
\(4\) 0.132311 + 0.125332i 0.0330779 + 0.0313330i
\(5\) 3.62948 4.27295i 0.725896 0.854590i −0.268170 0.963372i \(-0.586419\pi\)
0.994066 + 0.108781i \(0.0346948\pi\)
\(6\) −3.12952 1.65917i −0.521587 0.276528i
\(7\) −2.21876 1.33498i −0.316966 0.190712i 0.348176 0.937429i \(-0.386801\pi\)
−0.665142 + 0.746717i \(0.731629\pi\)
\(8\) −3.27829 7.08590i −0.409786 0.885738i
\(9\) 2.92986 + 0.644911i 0.325540 + 0.0716568i
\(10\) 10.1297 5.37045i 1.01297 0.537045i
\(11\) 14.9816 + 0.812281i 1.36197 + 0.0738437i 0.720579 0.693373i \(-0.243876\pi\)
0.641388 + 0.767217i \(0.278359\pi\)
\(12\) −0.204356 0.240587i −0.0170297 0.0200489i
\(13\) −3.95392 17.9628i −0.304147 1.38176i −0.842346 0.538937i \(-0.818826\pi\)
0.538199 0.842818i \(-0.319105\pi\)
\(14\) −3.20470 4.21571i −0.228907 0.301122i
\(15\) −7.04977 + 6.67790i −0.469985 + 0.445193i
\(16\) −0.903891 16.6713i −0.0564932 1.04196i
\(17\) 11.3882 6.85207i 0.669896 0.403063i −0.139584 0.990210i \(-0.544577\pi\)
0.809480 + 0.587147i \(0.199749\pi\)
\(18\) 5.07801 + 3.44297i 0.282112 + 0.191276i
\(19\) −7.70702 + 27.7582i −0.405633 + 1.46096i 0.425539 + 0.904940i \(0.360085\pi\)
−0.831171 + 0.556016i \(0.812329\pi\)
\(20\) 1.01576 0.110471i 0.0507880 0.00552353i
\(21\) 3.57048 + 2.71421i 0.170023 + 0.129248i
\(22\) 27.8474 + 12.8836i 1.26579 + 0.585617i
\(23\) −12.2459 + 8.30293i −0.532431 + 0.360997i −0.797583 0.603210i \(-0.793888\pi\)
0.265152 + 0.964207i \(0.414578\pi\)
\(24\) 4.31792 + 12.8151i 0.179913 + 0.533963i
\(25\) −1.04046 6.34651i −0.0416183 0.253860i
\(26\) 6.08532 37.1188i 0.234051 1.42765i
\(27\) −4.92415 1.65914i −0.182376 0.0614496i
\(28\) −0.126251 0.454716i −0.00450897 0.0162398i
\(29\) −4.15885 10.4379i −0.143409 0.359928i 0.839674 0.543091i \(-0.182746\pi\)
−0.983083 + 0.183162i \(0.941367\pi\)
\(30\) −18.4481 + 7.35038i −0.614936 + 0.245013i
\(31\) 47.1041 13.0784i 1.51949 0.421884i 0.595199 0.803578i \(-0.297073\pi\)
0.924289 + 0.381694i \(0.124659\pi\)
\(32\) 0.930361 2.76121i 0.0290738 0.0862879i
\(33\) −25.6447 4.20424i −0.777113 0.127401i
\(34\) 26.8222 4.39727i 0.788887 0.129331i
\(35\) −13.7573 + 4.63536i −0.393065 + 0.132439i
\(36\) 0.306826 + 0.452535i 0.00852295 + 0.0125704i
\(37\) −14.9472 + 32.3079i −0.403979 + 0.873187i 0.593673 + 0.804706i \(0.297677\pi\)
−0.997652 + 0.0684809i \(0.978185\pi\)
\(38\) −35.6535 + 46.9014i −0.938250 + 1.23425i
\(39\) 3.44438 + 31.6706i 0.0883175 + 0.812066i
\(40\) −42.1762 11.7102i −1.05441 0.292754i
\(41\) −20.4051 + 30.0953i −0.497686 + 0.734032i −0.990711 0.135983i \(-0.956581\pi\)
0.493025 + 0.870015i \(0.335891\pi\)
\(42\) 4.72870 + 7.85916i 0.112588 + 0.187123i
\(43\) 13.2243 0.717002i 0.307542 0.0166745i 0.100278 0.994959i \(-0.468027\pi\)
0.207264 + 0.978285i \(0.433544\pi\)
\(44\) 1.88044 + 1.98515i 0.0427372 + 0.0451171i
\(45\) 13.3895 10.1785i 0.297545 0.226188i
\(46\) −29.5498 + 6.50440i −0.642387 + 0.141400i
\(47\) −34.0965 + 28.9618i −0.725458 + 0.616210i −0.932097 0.362208i \(-0.882023\pi\)
0.206640 + 0.978417i \(0.433747\pi\)
\(48\) −1.56559 + 28.8755i −0.0326164 + 0.601573i
\(49\) −19.8113 37.3681i −0.404312 0.762614i
\(50\) 2.82734 12.8447i 0.0565468 0.256895i
\(51\) −20.8925 + 9.66592i −0.409658 + 0.189528i
\(52\) 1.72817 2.87224i 0.0332340 0.0552354i
\(53\) −20.9578 + 39.5306i −0.395430 + 0.745861i −0.998662 0.0517050i \(-0.983534\pi\)
0.603232 + 0.797566i \(0.293879\pi\)
\(54\) −8.09905 6.87940i −0.149982 0.127396i
\(55\) 57.8464 61.0677i 1.05175 1.11032i
\(56\) −2.18583 + 20.0984i −0.0390327 + 0.358900i
\(57\) 18.4689 46.3535i 0.324016 0.813218i
\(58\) 22.9781i 0.396174i
\(59\) 35.4693 47.1480i 0.601174 0.799118i
\(60\) −1.76972 −0.0294954
\(61\) 68.9967 + 27.4908i 1.13109 + 0.450669i 0.859190 0.511656i \(-0.170968\pi\)
0.271903 + 0.962325i \(0.412347\pi\)
\(62\) 99.3885 + 10.8092i 1.60304 + 0.174341i
\(63\) −5.63972 5.34222i −0.0895193 0.0847972i
\(64\) −39.3769 + 46.3580i −0.615263 + 0.724344i
\(65\) −91.1049 48.3008i −1.40161 0.743089i
\(66\) −45.5376 27.3991i −0.689964 0.415138i
\(67\) −16.4442 35.5437i −0.245436 0.530502i 0.745230 0.666807i \(-0.232339\pi\)
−0.990667 + 0.136305i \(0.956477\pi\)
\(68\) 2.36558 + 0.520703i 0.0347879 + 0.00765740i
\(69\) 22.6411 12.0035i 0.328131 0.173964i
\(70\) −29.6449 1.60730i −0.423499 0.0229614i
\(71\) 77.8248 + 91.6224i 1.09612 + 1.29046i 0.953736 + 0.300645i \(0.0972020\pi\)
0.142387 + 0.989811i \(0.454522\pi\)
\(72\) −5.03515 22.8749i −0.0699327 0.317707i
\(73\) 17.4449 + 22.9484i 0.238971 + 0.314361i 0.899908 0.436081i \(-0.143634\pi\)
−0.660936 + 0.750442i \(0.729841\pi\)
\(74\) −52.8525 + 50.0645i −0.714222 + 0.676547i
\(75\) 0.603065 + 11.1229i 0.00804087 + 0.148305i
\(76\) −4.49872 + 2.70679i −0.0591936 + 0.0356156i
\(77\) −32.1563 21.8025i −0.417614 0.283149i
\(78\) −17.4295 + 62.7752i −0.223455 + 0.804811i
\(79\) 143.847 15.6443i 1.82085 0.198030i 0.867000 0.498308i \(-0.166045\pi\)
0.953851 + 0.300279i \(0.0970797\pi\)
\(80\) −74.5163 56.6458i −0.931454 0.708073i
\(81\) 8.16818 + 3.77900i 0.100842 + 0.0466543i
\(82\) −61.5466 + 41.7296i −0.750568 + 0.508898i
\(83\) 2.37138 + 7.03801i 0.0285709 + 0.0847953i 0.960990 0.276584i \(-0.0892025\pi\)
−0.932419 + 0.361379i \(0.882306\pi\)
\(84\) 0.132238 + 0.806616i 0.00157426 + 0.00960258i
\(85\) 12.0548 73.5308i 0.141821 0.865069i
\(86\) 25.6664 + 8.64802i 0.298447 + 0.100558i
\(87\) 5.20642 + 18.7518i 0.0598440 + 0.215538i
\(88\) −43.3584 108.821i −0.492709 1.23661i
\(89\) −37.0843 + 14.7757i −0.416678 + 0.166020i −0.569049 0.822304i \(-0.692688\pi\)
0.152371 + 0.988323i \(0.451309\pi\)
\(90\) 33.1422 9.20188i 0.368246 0.102243i
\(91\) −15.2073 + 45.1336i −0.167113 + 0.495974i
\(92\) −2.66090 0.436232i −0.0289228 0.00474165i
\(93\) −83.5576 + 13.6986i −0.898469 + 0.147297i
\(94\) −86.6996 + 29.2125i −0.922336 + 0.310771i
\(95\) 90.6369 + 133.679i 0.954072 + 1.40715i
\(96\) −2.11907 + 4.58030i −0.0220737 + 0.0477114i
\(97\) 84.0542 110.571i 0.866539 1.13991i −0.122531 0.992465i \(-0.539101\pi\)
0.989070 0.147447i \(-0.0471057\pi\)
\(98\) −9.35180 85.9884i −0.0954265 0.877432i
\(99\) 43.3703 + 12.0417i 0.438084 + 0.121633i
\(100\) 0.657757 0.970119i 0.00657757 0.00970119i
\(101\) 4.75676 + 7.90580i 0.0470966 + 0.0782752i 0.879511 0.475878i \(-0.157870\pi\)
−0.832415 + 0.554153i \(0.813042\pi\)
\(102\) −47.0085 + 2.54872i −0.460867 + 0.0249875i
\(103\) 31.3026 + 33.0457i 0.303908 + 0.320832i 0.860005 0.510285i \(-0.170460\pi\)
−0.556097 + 0.831118i \(0.687702\pi\)
\(104\) −114.321 + 86.9044i −1.09924 + 0.835619i
\(105\) 24.5567 5.40533i 0.233873 0.0514793i
\(106\) −69.7386 + 59.2365i −0.657911 + 0.558835i
\(107\) −7.00595 + 129.217i −0.0654762 + 1.20764i 0.762543 + 0.646937i \(0.223950\pi\)
−0.828019 + 0.560700i \(0.810532\pi\)
\(108\) −0.443578 0.836677i −0.00410721 0.00774701i
\(109\) −7.10920 + 32.2974i −0.0652220 + 0.296307i −0.997929 0.0643291i \(-0.979509\pi\)
0.932707 + 0.360636i \(0.117440\pi\)
\(110\) 156.122 72.2299i 1.41929 0.656635i
\(111\) 31.7878 52.8318i 0.286377 0.475962i
\(112\) −20.2504 + 38.1963i −0.180807 + 0.341038i
\(113\) −106.564 90.5167i −0.943049 0.801033i 0.0370970 0.999312i \(-0.488189\pi\)
−0.980146 + 0.198279i \(0.936465\pi\)
\(114\) 70.1747 74.0826i 0.615568 0.649847i
\(115\) −8.96823 + 82.4615i −0.0779846 + 0.717056i
\(116\) 0.757943 1.90229i 0.00653399 0.0163991i
\(117\) 55.1785i 0.471611i
\(118\) 103.074 62.7235i 0.873505 0.531555i
\(119\) −34.4152 −0.289203
\(120\) 70.4302 + 28.0619i 0.586918 + 0.233850i
\(121\) 103.499 + 11.2562i 0.855363 + 0.0930263i
\(122\) 110.271 + 104.454i 0.903863 + 0.856184i
\(123\) 40.7714 47.9998i 0.331475 0.390242i
\(124\) 7.87156 + 4.17324i 0.0634803 + 0.0336551i
\(125\) 89.2015 + 53.6708i 0.713612 + 0.429366i
\(126\) −6.67057 14.4182i −0.0529410 0.114430i
\(127\) 143.120 + 31.5030i 1.12693 + 0.248055i 0.739046 0.673655i \(-0.235277\pi\)
0.387880 + 0.921710i \(0.373208\pi\)
\(128\) −120.197 + 63.7242i −0.939036 + 0.497845i
\(129\) −22.9052 1.24188i −0.177560 0.00962700i
\(130\) −136.520 160.724i −1.05016 1.23634i
\(131\) −26.9654 122.505i −0.205842 0.935152i −0.960336 0.278845i \(-0.910049\pi\)
0.754494 0.656307i \(-0.227882\pi\)
\(132\) −2.86617 3.77038i −0.0217134 0.0285635i
\(133\) 54.1567 51.3000i 0.407194 0.385714i
\(134\) −4.33604 79.9736i −0.0323585 0.596818i
\(135\) −24.9615 + 15.0188i −0.184900 + 0.111251i
\(136\) −85.8871 58.2329i −0.631522 0.428183i
\(137\) 54.9802 198.021i 0.401315 1.44541i −0.436624 0.899644i \(-0.643826\pi\)
0.837939 0.545763i \(-0.183760\pi\)
\(138\) 52.0998 5.66619i 0.377535 0.0410594i
\(139\) 7.82788 + 5.95060i 0.0563157 + 0.0428101i 0.632953 0.774190i \(-0.281842\pi\)
−0.576638 + 0.817000i \(0.695636\pi\)
\(140\) −2.40120 1.11092i −0.0171515 0.00793511i
\(141\) 64.1343 43.4842i 0.454853 0.308398i
\(142\) 78.4983 + 232.975i 0.552805 + 1.64067i
\(143\) −44.6453 272.324i −0.312205 1.90436i
\(144\) 8.10323 49.4275i 0.0562724 0.343247i
\(145\) −59.6952 20.1136i −0.411691 0.138715i
\(146\) 15.7711 + 56.8024i 0.108021 + 0.389058i
\(147\) 27.1152 + 68.0540i 0.184457 + 0.462952i
\(148\) −6.02691 + 2.40134i −0.0407224 + 0.0162253i
\(149\) −162.744 + 45.1857i −1.09224 + 0.303259i −0.766529 0.642209i \(-0.778018\pi\)
−0.325713 + 0.945469i \(0.605604\pi\)
\(150\) −7.27379 + 21.5878i −0.0484919 + 0.143919i
\(151\) −196.988 32.2945i −1.30455 0.213871i −0.530876 0.847450i \(-0.678137\pi\)
−0.773678 + 0.633579i \(0.781585\pi\)
\(152\) 221.958 36.3881i 1.46025 0.239395i
\(153\) 37.7849 12.7312i 0.246960 0.0832106i
\(154\) −44.5873 65.7614i −0.289528 0.427022i
\(155\) 115.080 248.741i 0.742452 1.60478i
\(156\) −3.51361 + 4.62207i −0.0225231 + 0.0296287i
\(157\) 8.77357 + 80.6717i 0.0558826 + 0.513832i 0.988308 + 0.152470i \(0.0487227\pi\)
−0.932425 + 0.361362i \(0.882312\pi\)
\(158\) 285.124 + 79.1643i 1.80458 + 0.501040i
\(159\) 43.4900 64.1429i 0.273522 0.403415i
\(160\) −8.42180 13.9971i −0.0526363 0.0874822i
\(161\) 38.2550 2.07413i 0.237609 0.0128828i
\(162\) 12.6574 + 13.3623i 0.0781324 + 0.0824834i
\(163\) −237.919 + 180.861i −1.45963 + 1.10958i −0.488060 + 0.872810i \(0.662295\pi\)
−0.971566 + 0.236768i \(0.923912\pi\)
\(164\) −6.47174 + 1.42454i −0.0394618 + 0.00868621i
\(165\) −111.041 + 94.3195i −0.672979 + 0.571633i
\(166\) −0.822271 + 15.1659i −0.00495344 + 0.0913608i
\(167\) −29.5765 55.7872i −0.177105 0.334055i 0.779028 0.626990i \(-0.215713\pi\)
−0.956133 + 0.292934i \(0.905368\pi\)
\(168\) 7.52756 34.1980i 0.0448069 0.203560i
\(169\) −153.649 + 71.0857i −0.909167 + 0.420625i
\(170\) 78.5611 130.570i 0.462124 0.768056i
\(171\) −40.4821 + 76.3573i −0.236737 + 0.446534i
\(172\) 1.83959 + 1.56256i 0.0106953 + 0.00908467i
\(173\) 2.99989 3.16694i 0.0173404 0.0183060i −0.717268 0.696798i \(-0.754607\pi\)
0.734608 + 0.678492i \(0.237366\pi\)
\(174\) −4.30305 + 39.5659i −0.0247302 + 0.227390i
\(175\) −6.16396 + 15.4704i −0.0352226 + 0.0884022i
\(176\) 250.497i 1.42328i
\(177\) −69.9037 + 74.5417i −0.394936 + 0.421140i
\(178\) −81.6377 −0.458639
\(179\) −230.638 91.8944i −1.28848 0.513377i −0.377568 0.925982i \(-0.623240\pi\)
−0.910910 + 0.412605i \(0.864619\pi\)
\(180\) 3.04728 + 0.331412i 0.0169293 + 0.00184118i
\(181\) 13.2384 + 12.5400i 0.0731401 + 0.0692820i 0.723396 0.690433i \(-0.242580\pi\)
−0.650256 + 0.759715i \(0.725339\pi\)
\(182\) −63.0549 + 74.2340i −0.346456 + 0.407879i
\(183\) −113.657 60.2572i −0.621077 0.329274i
\(184\) 98.9794 + 59.5539i 0.537931 + 0.323663i
\(185\) 83.7996 + 181.130i 0.452971 + 0.979080i
\(186\) −169.113 37.2245i −0.909208 0.200132i
\(187\) 176.180 93.4048i 0.942140 0.499491i
\(188\) −8.14121 0.441404i −0.0433043 0.00234789i
\(189\) 8.71059 + 10.2549i 0.0460878 + 0.0542587i
\(190\) 71.0037 + 322.573i 0.373704 + 1.69775i
\(191\) 170.575 + 224.388i 0.893065 + 1.17481i 0.983860 + 0.178937i \(0.0572660\pi\)
−0.0907954 + 0.995870i \(0.528941\pi\)
\(192\) 76.4843 72.4497i 0.398356 0.377342i
\(193\) −8.89977 164.147i −0.0461128 0.850501i −0.926511 0.376267i \(-0.877208\pi\)
0.880399 0.474234i \(-0.157275\pi\)
\(194\) 243.384 146.439i 1.25456 0.754843i
\(195\) 147.828 + 100.230i 0.758093 + 0.514000i
\(196\) 2.06216 7.42722i 0.0105212 0.0378940i
\(197\) −161.044 + 17.5145i −0.817480 + 0.0889063i −0.507298 0.861771i \(-0.669356\pi\)
−0.310182 + 0.950677i \(0.600390\pi\)
\(198\) 73.2802 + 55.7062i 0.370102 + 0.281344i
\(199\) 104.151 + 48.1854i 0.523372 + 0.242138i 0.663742 0.747961i \(-0.268967\pi\)
−0.140370 + 0.990099i \(0.544829\pi\)
\(200\) −41.5598 + 28.1783i −0.207799 + 0.140891i
\(201\) 21.6591 + 64.2820i 0.107757 + 0.319811i
\(202\) 3.05262 + 18.6201i 0.0151120 + 0.0921789i
\(203\) −4.70697 + 28.7112i −0.0231870 + 0.141435i
\(204\) −3.97577 1.33959i −0.0194891 0.00656664i
\(205\) 54.5359 + 196.420i 0.266029 + 0.958148i
\(206\) 34.4548 + 86.4751i 0.167256 + 0.419782i
\(207\) −41.2335 + 16.4289i −0.199195 + 0.0793667i
\(208\) −295.890 + 82.1533i −1.42255 + 0.394968i
\(209\) −138.011 + 409.603i −0.660341 + 1.95982i
\(210\) 50.7445 + 8.31914i 0.241641 + 0.0396150i
\(211\) −328.508 + 53.8562i −1.55691 + 0.255243i −0.877885 0.478872i \(-0.841046\pi\)
−0.679026 + 0.734114i \(0.737598\pi\)
\(212\) −7.72741 + 2.60367i −0.0364501 + 0.0122815i
\(213\) −116.848 172.338i −0.548584 0.809101i
\(214\) −111.121 + 240.185i −0.519258 + 1.12236i
\(215\) 44.9337 59.1092i 0.208994 0.274927i
\(216\) 4.38628 + 40.3312i 0.0203069 + 0.186719i
\(217\) −121.972 33.8654i −0.562084 0.156062i
\(218\) −37.9538 + 55.9776i −0.174100 + 0.256778i
\(219\) −25.7408 42.7816i −0.117538 0.195350i
\(220\) 15.3075 0.829947i 0.0695794 0.00377249i
\(221\) −168.111 177.472i −0.760682 0.803042i
\(222\) 100.382 76.3084i 0.452171 0.343732i
\(223\) −356.234 + 78.4130i −1.59746 + 0.351628i −0.922431 0.386162i \(-0.873800\pi\)
−0.675030 + 0.737790i \(0.735869\pi\)
\(224\) −5.75042 + 4.88445i −0.0256715 + 0.0218056i
\(225\) 1.04454 19.2654i 0.00464240 0.0856240i
\(226\) −133.935 252.629i −0.592634 1.11783i
\(227\) −24.2742 + 110.279i −0.106935 + 0.485810i 0.892463 + 0.451120i \(0.148975\pi\)
−0.999398 + 0.0346900i \(0.988956\pi\)
\(228\) 8.25322 3.81835i 0.0361983 0.0167471i
\(229\) 109.774 182.445i 0.479361 0.796704i −0.518950 0.854805i \(-0.673677\pi\)
0.998311 + 0.0581006i \(0.0185044\pi\)
\(230\) −79.4573 + 149.872i −0.345467 + 0.651619i
\(231\) 51.2869 + 43.5635i 0.222021 + 0.188587i
\(232\) −60.3282 + 63.6877i −0.260035 + 0.274516i
\(233\) −5.09345 + 46.8335i −0.0218603 + 0.201002i −0.999975 0.00706396i \(-0.997751\pi\)
0.978115 + 0.208066i \(0.0667170\pi\)
\(234\) 41.7675 104.829i 0.178494 0.447985i
\(235\) 250.809i 1.06727i
\(236\) 10.6021 1.79278i 0.0449243 0.00759653i
\(237\) −250.620 −1.05747
\(238\) −65.3822 26.0507i −0.274715 0.109457i
\(239\) 278.069 + 30.2418i 1.16347 + 0.126535i 0.669409 0.742894i \(-0.266547\pi\)
0.494059 + 0.869429i \(0.335513\pi\)
\(240\) 117.701 + 111.493i 0.490423 + 0.464553i
\(241\) −88.5531 + 104.253i −0.367440 + 0.432584i −0.914548 0.404478i \(-0.867453\pi\)
0.547107 + 0.837063i \(0.315729\pi\)
\(242\) 188.108 + 99.7284i 0.777304 + 0.412101i
\(243\) −13.3571 8.03669i −0.0549674 0.0330728i
\(244\) 5.68358 + 12.2848i 0.0232933 + 0.0503477i
\(245\) −231.577 50.9739i −0.945211 0.208057i
\(246\) 113.791 60.3284i 0.462567 0.245237i
\(247\) 529.088 + 28.6863i 2.14206 + 0.116139i
\(248\) −247.093 290.901i −0.996344 1.17299i
\(249\) −2.76528 12.5628i −0.0111056 0.0504531i
\(250\) 128.840 + 169.486i 0.515358 + 0.677942i
\(251\) 54.2296 51.3690i 0.216054 0.204657i −0.572017 0.820242i \(-0.693839\pi\)
0.788071 + 0.615585i \(0.211080\pi\)
\(252\) −0.0766472 1.41367i −0.000304156 0.00560982i
\(253\) −190.208 + 114.444i −0.751810 + 0.452349i
\(254\) 248.053 + 168.184i 0.976588 + 0.662143i
\(255\) −34.5270 + 124.355i −0.135400 + 0.487667i
\(256\) −34.7154 + 3.77553i −0.135607 + 0.0147482i
\(257\) −17.9431 13.6400i −0.0698175 0.0530739i 0.569683 0.821864i \(-0.307066\pi\)
−0.639501 + 0.768790i \(0.720859\pi\)
\(258\) −42.5754 19.6975i −0.165021 0.0763468i
\(259\) 76.2949 51.7292i 0.294575 0.199727i
\(260\) −6.00059 17.8091i −0.0230792 0.0684966i
\(261\) −5.45332 33.2638i −0.0208939 0.127447i
\(262\) 41.5014 253.147i 0.158402 0.966211i
\(263\) −419.527 141.355i −1.59516 0.537472i −0.625144 0.780509i \(-0.714960\pi\)
−0.970017 + 0.243037i \(0.921856\pi\)
\(264\) 54.2800 + 195.499i 0.205606 + 0.740526i
\(265\) 92.8465 + 233.027i 0.350364 + 0.879348i
\(266\) 141.719 56.4661i 0.532779 0.212278i
\(267\) 66.6224 18.4976i 0.249522 0.0692795i
\(268\) 2.27900 6.76383i 0.00850372 0.0252382i
\(269\) 63.8330 + 10.4649i 0.237297 + 0.0389029i 0.279257 0.960216i \(-0.409912\pi\)
−0.0419597 + 0.999119i \(0.513360\pi\)
\(270\) −58.7907 + 9.63824i −0.217743 + 0.0356972i
\(271\) 87.6230 29.5236i 0.323332 0.108943i −0.152955 0.988233i \(-0.548879\pi\)
0.476287 + 0.879290i \(0.341982\pi\)
\(272\) −124.527 183.663i −0.457819 0.675232i
\(273\) 34.6374 74.8676i 0.126877 0.274240i
\(274\) 254.344 334.584i 0.928264 1.22111i
\(275\) −10.4326 95.9262i −0.0379367 0.348823i
\(276\) 4.50010 + 1.24945i 0.0163047 + 0.00452698i
\(277\) 237.823 350.762i 0.858565 1.26629i −0.103819 0.994596i \(-0.533106\pi\)
0.962384 0.271693i \(-0.0875835\pi\)
\(278\) 10.3671 + 17.2303i 0.0372919 + 0.0619796i
\(279\) 146.443 7.93991i 0.524885 0.0284585i
\(280\) 77.9460 + 82.2866i 0.278379 + 0.293881i
\(281\) −358.894 + 272.825i −1.27720 + 0.970906i −0.277256 + 0.960796i \(0.589425\pi\)
−0.999949 + 0.0101095i \(0.996782\pi\)
\(282\) 154.758 34.0649i 0.548789 0.120797i
\(283\) 214.637 182.314i 0.758435 0.644220i −0.182346 0.983234i \(-0.558369\pi\)
0.940781 + 0.339014i \(0.110093\pi\)
\(284\) −1.18612 + 21.8766i −0.00417647 + 0.0770304i
\(285\) −131.034 247.156i −0.459767 0.867213i
\(286\) 121.319 551.158i 0.424192 1.92713i
\(287\) 85.4509 39.5338i 0.297738 0.137748i
\(288\) 4.50657 7.48997i 0.0156478 0.0260068i
\(289\) −52.6291 + 99.2690i −0.182108 + 0.343491i
\(290\) −98.1843 83.3985i −0.338567 0.287581i
\(291\) −165.439 + 174.652i −0.568520 + 0.600179i
\(292\) −0.568007 + 5.22274i −0.00194523 + 0.0178861i
\(293\) 148.594 372.943i 0.507147 1.27284i −0.423158 0.906056i \(-0.639078\pi\)
0.930305 0.366787i \(-0.119542\pi\)
\(294\) 149.814i 0.509573i
\(295\) −72.7261 322.681i −0.246529 1.09383i
\(296\) 277.932 0.938960
\(297\) −72.4241 28.8564i −0.243852 0.0971596i
\(298\) −343.386 37.3455i −1.15230 0.125320i
\(299\) 197.563 + 187.142i 0.660747 + 0.625893i
\(300\) −1.31426 + 1.54727i −0.00438087 + 0.00515756i
\(301\) −30.2988 16.0634i −0.100660 0.0533668i
\(302\) −349.793 210.464i −1.15826 0.696900i
\(303\) −6.71015 14.5038i −0.0221457 0.0478672i
\(304\) 469.731 + 103.396i 1.54517 + 0.340117i
\(305\) 367.889 195.042i 1.20619 0.639483i
\(306\) 81.4210 + 4.41452i 0.266082 + 0.0144265i
\(307\) 118.957 + 140.047i 0.387482 + 0.456179i 0.920973 0.389627i \(-0.127396\pi\)
−0.533491 + 0.845806i \(0.679120\pi\)
\(308\) −1.52209 6.91494i −0.00494186 0.0224511i
\(309\) −47.7114 62.7633i −0.154406 0.203117i
\(310\) 406.916 385.451i 1.31263 1.24339i
\(311\) 22.2975 + 411.253i 0.0716961 + 1.32236i 0.784121 + 0.620608i \(0.213114\pi\)
−0.712425 + 0.701749i \(0.752403\pi\)
\(312\) 213.123 128.232i 0.683086 0.410999i
\(313\) 48.4137 + 32.8253i 0.154676 + 0.104873i 0.636070 0.771631i \(-0.280559\pi\)
−0.481394 + 0.876504i \(0.659869\pi\)
\(314\) −44.3965 + 159.902i −0.141390 + 0.509242i
\(315\) −43.2963 + 4.70875i −0.137449 + 0.0149484i
\(316\) 20.9934 + 15.9588i 0.0664347 + 0.0505024i
\(317\) −287.571 133.044i −0.907163 0.419698i −0.0898919 0.995952i \(-0.528652\pi\)
−0.817271 + 0.576253i \(0.804514\pi\)
\(318\) 131.176 88.9394i 0.412503 0.279684i
\(319\) −53.8278 159.755i −0.168739 0.500800i
\(320\) 55.1682 + 336.511i 0.172400 + 1.05160i
\(321\) 36.2617 221.187i 0.112965 0.689055i
\(322\) 74.2472 + 25.0168i 0.230581 + 0.0776919i
\(323\) 102.432 + 368.926i 0.317126 + 1.14218i
\(324\) 0.607114 + 1.52374i 0.00187381 + 0.00470290i
\(325\) −109.887 + 43.7831i −0.338115 + 0.134717i
\(326\) −588.904 + 163.508i −1.80645 + 0.501559i
\(327\) 18.2896 54.2815i 0.0559314 0.165999i
\(328\) 280.146 + 45.9277i 0.854105 + 0.140023i
\(329\) 114.316 18.7411i 0.347464 0.0569638i
\(330\) −282.353 + 95.1358i −0.855615 + 0.288290i
\(331\) −205.535 303.141i −0.620952 0.915835i 0.379003 0.925396i \(-0.376267\pi\)
−0.999954 + 0.00956038i \(0.996957\pi\)
\(332\) −0.568328 + 1.22842i −0.00171183 + 0.00370006i
\(333\) −64.6291 + 85.0181i −0.194081 + 0.255310i
\(334\) −13.9614 128.373i −0.0418006 0.384351i
\(335\) −211.560 58.7394i −0.631523 0.175342i
\(336\) 42.0220 61.9779i 0.125066 0.184458i
\(337\) 18.1314 + 30.1346i 0.0538023 + 0.0894201i 0.882591 0.470141i \(-0.155797\pi\)
−0.828789 + 0.559562i \(0.810970\pi\)
\(338\) −345.712 + 18.7440i −1.02282 + 0.0554556i
\(339\) 166.542 + 175.817i 0.491275 + 0.518633i
\(340\) 10.8108 8.21812i 0.0317963 0.0241710i
\(341\) 716.320 157.674i 2.10065 0.462387i
\(342\) −134.707 + 114.421i −0.393880 + 0.334565i
\(343\) −12.7985 + 236.054i −0.0373133 + 0.688204i
\(344\) −48.4337 91.3557i −0.140796 0.265569i
\(345\) 30.8847 140.311i 0.0895210 0.406698i
\(346\) 8.09644 3.74581i 0.0234001 0.0108260i
\(347\) −66.5395 + 110.590i −0.191756 + 0.318702i −0.937788 0.347209i \(-0.887129\pi\)
0.746031 + 0.665911i \(0.231957\pi\)
\(348\) −1.66134 + 3.13362i −0.00477396 + 0.00900465i
\(349\) −237.034 201.339i −0.679182 0.576902i 0.239982 0.970777i \(-0.422858\pi\)
−0.919164 + 0.393875i \(0.871134\pi\)
\(350\) −23.4207 + 24.7249i −0.0669163 + 0.0706426i
\(351\) −10.3331 + 95.0117i −0.0294392 + 0.270689i
\(352\) 16.1812 40.6118i 0.0459693 0.115374i
\(353\) 141.345i 0.400410i 0.979754 + 0.200205i \(0.0641609\pi\)
−0.979754 + 0.200205i \(0.935839\pi\)
\(354\) −189.228 + 88.7012i −0.534543 + 0.250568i
\(355\) 673.961 1.89848
\(356\) −6.75856 2.69286i −0.0189847 0.00756420i
\(357\) 59.2594 + 6.44485i 0.165993 + 0.0180528i
\(358\) −368.607 349.163i −1.02963 0.975317i
\(359\) −118.924 + 140.008i −0.331263 + 0.389993i −0.902427 0.430843i \(-0.858216\pi\)
0.571164 + 0.820836i \(0.306492\pi\)
\(360\) −116.018 61.5091i −0.322273 0.170859i
\(361\) −401.793 241.751i −1.11300 0.669669i
\(362\) 15.6581 + 33.8445i 0.0432545 + 0.0934930i
\(363\) −176.107 38.7640i −0.485142 0.106788i
\(364\) −7.66879 + 4.06573i −0.0210681 + 0.0111696i
\(365\) 161.373 + 8.74939i 0.442118 + 0.0239709i
\(366\) −170.315 200.510i −0.465341 0.547842i
\(367\) 19.2508 + 87.4572i 0.0524545 + 0.238303i 0.995552 0.0942130i \(-0.0300335\pi\)
−0.943098 + 0.332516i \(0.892102\pi\)
\(368\) 149.490 + 196.650i 0.406222 + 0.534375i
\(369\) −79.1930 + 75.0156i −0.214615 + 0.203294i
\(370\) 22.0964 + 407.544i 0.0597200 + 1.10147i
\(371\) 99.2731 59.7306i 0.267582 0.160999i
\(372\) −12.7725 8.65997i −0.0343347 0.0232795i
\(373\) 143.397 516.470i 0.384443 1.38464i −0.477945 0.878390i \(-0.658618\pi\)
0.862388 0.506248i \(-0.168968\pi\)
\(374\) 405.412 44.0912i 1.08399 0.117891i
\(375\) −143.545 109.120i −0.382787 0.290987i
\(376\) 316.999 + 146.659i 0.843083 + 0.390052i
\(377\) −171.051 + 115.975i −0.453716 + 0.307627i
\(378\) 8.78597 + 26.0758i 0.0232433 + 0.0689837i
\(379\) −11.7270 71.5316i −0.0309420 0.188738i 0.966833 0.255409i \(-0.0822103\pi\)
−0.997775 + 0.0666717i \(0.978762\pi\)
\(380\) −4.76202 + 29.0470i −0.0125316 + 0.0764396i
\(381\) −240.538 81.0466i −0.631333 0.212721i
\(382\) 154.209 + 555.412i 0.403689 + 1.45396i
\(383\) 48.3460 + 121.339i 0.126230 + 0.316813i 0.978487 0.206311i \(-0.0661458\pi\)
−0.852257 + 0.523124i \(0.824766\pi\)
\(384\) 218.900 87.2176i 0.570051 0.227129i
\(385\) −209.872 + 58.2705i −0.545121 + 0.151352i
\(386\) 107.343 318.584i 0.278092 0.825347i
\(387\) 39.2078 + 6.42780i 0.101312 + 0.0166093i
\(388\) 24.9795 4.09518i 0.0643801 0.0105546i
\(389\) −316.889 + 106.773i −0.814626 + 0.274479i −0.695616 0.718414i \(-0.744869\pi\)
−0.119010 + 0.992893i \(0.537972\pi\)
\(390\) 204.976 + 302.317i 0.525579 + 0.775171i
\(391\) −82.5670 + 178.466i −0.211169 + 0.456434i
\(392\) −199.839 + 262.884i −0.509794 + 0.670623i
\(393\) 23.4904 + 215.991i 0.0597720 + 0.549594i
\(394\) −319.210 88.6281i −0.810176 0.224944i
\(395\) 455.243 671.433i 1.15251 1.69983i
\(396\) 4.22917 + 7.02894i 0.0106797 + 0.0177499i
\(397\) 701.604 38.0399i 1.76727 0.0958184i 0.858419 0.512949i \(-0.171447\pi\)
0.908847 + 0.417131i \(0.136964\pi\)
\(398\) 161.393 + 170.380i 0.405510 + 0.428092i
\(399\) −102.859 + 78.1915i −0.257792 + 0.195969i
\(400\) −104.864 + 23.0823i −0.262160 + 0.0577058i
\(401\) 249.392 211.835i 0.621924 0.528267i −0.280090 0.959974i \(-0.590364\pi\)
0.902014 + 0.431706i \(0.142088\pi\)
\(402\) −7.51025 + 138.518i −0.0186822 + 0.344573i
\(403\) −421.171 794.412i −1.04509 1.97125i
\(404\) −0.361476 + 1.64220i −0.000894743 + 0.00406486i
\(405\) 45.7937 21.1864i 0.113071 0.0523122i
\(406\) −30.6754 + 50.9829i −0.0755552 + 0.125574i
\(407\) −250.177 + 471.884i −0.614686 + 1.15942i
\(408\) 136.984 + 116.355i 0.335744 + 0.285184i
\(409\) 44.8765 47.3756i 0.109723 0.115833i −0.668820 0.743424i \(-0.733200\pi\)
0.778543 + 0.627591i \(0.215959\pi\)
\(410\) −45.0733 + 414.442i −0.109935 + 1.01083i
\(411\) −131.753 + 330.675i −0.320567 + 0.804563i
\(412\) 8.29554i 0.0201348i
\(413\) −141.640 + 57.2592i −0.342953 + 0.138642i
\(414\) −90.7716 −0.219255
\(415\) 38.6800 + 15.4115i 0.0932047 + 0.0371362i
\(416\) −53.2777 5.79430i −0.128071 0.0139286i
\(417\) −12.3645 11.7122i −0.0296510 0.0280869i
\(418\) −572.245 + 673.698i −1.36901 + 1.61172i
\(419\) 383.893 + 203.527i 0.916212 + 0.485745i 0.858630 0.512596i \(-0.171316\pi\)
0.0575821 + 0.998341i \(0.481661\pi\)
\(420\) 3.92659 + 2.36255i 0.00934902 + 0.00562512i
\(421\) 299.777 + 647.957i 0.712059 + 1.53909i 0.837167 + 0.546948i \(0.184210\pi\)
−0.125107 + 0.992143i \(0.539927\pi\)
\(422\) −664.869 146.349i −1.57552 0.346798i
\(423\) −118.576 + 62.8650i −0.280321 + 0.148617i
\(424\) 348.816 + 18.9122i 0.822679 + 0.0446044i
\(425\) −55.3357 65.1462i −0.130202 0.153285i
\(426\) −91.5374 415.859i −0.214877 0.976194i
\(427\) −116.387 153.105i −0.272570 0.358560i
\(428\) −17.1220 + 16.2188i −0.0400047 + 0.0378945i
\(429\) 25.8771 + 477.275i 0.0603195 + 1.11253i
\(430\) 130.108 78.2835i 0.302577 0.182055i
\(431\) 522.182 + 354.048i 1.21156 + 0.821457i 0.988183 0.153276i \(-0.0489822\pi\)
0.223375 + 0.974733i \(0.428293\pi\)
\(432\) −23.2091 + 83.5916i −0.0537248 + 0.193499i
\(433\) 331.260 36.0266i 0.765034 0.0832024i 0.282722 0.959202i \(-0.408763\pi\)
0.482312 + 0.876000i \(0.339797\pi\)
\(434\) −206.089 156.665i −0.474860 0.360979i
\(435\) 99.0224 + 45.8126i 0.227638 + 0.105316i
\(436\) −4.98853 + 3.38231i −0.0114416 + 0.00775759i
\(437\) −136.095 403.915i −0.311430 0.924290i
\(438\) −16.5190 100.761i −0.0377146 0.230049i
\(439\) 0.187606 1.14435i 0.000427349 0.00260671i −0.986612 0.163085i \(-0.947855\pi\)
0.987039 + 0.160478i \(0.0513037\pi\)
\(440\) −622.357 209.696i −1.41445 0.476583i
\(441\) −33.9453 122.260i −0.0769734 0.277233i
\(442\) −185.040 464.415i −0.418642 1.05071i
\(443\) −375.115 + 149.460i −0.846761 + 0.337380i −0.752844 0.658200i \(-0.771318\pi\)
−0.0939175 + 0.995580i \(0.529939\pi\)
\(444\) 10.8274 3.00622i 0.0243861 0.00677076i
\(445\) −71.4607 + 212.088i −0.160586 + 0.476602i
\(446\) −736.131 120.683i −1.65052 0.270589i
\(447\) 288.690 47.3284i 0.645840 0.105880i
\(448\) 149.255 50.2899i 0.333159 0.112254i
\(449\) −101.228 149.300i −0.225452 0.332517i 0.698093 0.716007i \(-0.254032\pi\)
−0.923545 + 0.383490i \(0.874722\pi\)
\(450\) 16.5674 35.8099i 0.0368165 0.0795775i
\(451\) −330.148 + 434.302i −0.732036 + 0.962976i
\(452\) −2.75506 25.3323i −0.00609526 0.0560450i
\(453\) 333.145 + 92.4972i 0.735419 + 0.204188i
\(454\) −129.592 + 191.134i −0.285446 + 0.421001i
\(455\) 137.659 + 228.791i 0.302548 + 0.502838i
\(456\) −389.003 + 21.0911i −0.853076 + 0.0462524i
\(457\) 286.525 + 302.480i 0.626969 + 0.661883i 0.959663 0.281152i \(-0.0907164\pi\)
−0.332695 + 0.943035i \(0.607958\pi\)
\(458\) 346.651 263.517i 0.756881 0.575366i
\(459\) −67.4459 + 14.8460i −0.146941 + 0.0323442i
\(460\) −11.5217 + 9.78659i −0.0250471 + 0.0212752i
\(461\) 18.0873 333.601i 0.0392349 0.723646i −0.911056 0.412282i \(-0.864732\pi\)
0.950291 0.311363i \(-0.100786\pi\)
\(462\) 64.4598 + 121.584i 0.139523 + 0.263169i
\(463\) 69.1319 314.069i 0.149313 0.678335i −0.841178 0.540758i \(-0.818137\pi\)
0.990491 0.137577i \(-0.0439315\pi\)
\(464\) −170.255 + 78.7681i −0.366928 + 0.169759i
\(465\) −244.737 + 406.756i −0.526317 + 0.874745i
\(466\) −45.1274 + 85.1192i −0.0968398 + 0.182659i
\(467\) −626.155 531.861i −1.34080 1.13889i −0.978366 0.206879i \(-0.933669\pi\)
−0.362436 0.932009i \(-0.618055\pi\)
\(468\) 6.91564 7.30075i 0.0147770 0.0155999i
\(469\) −10.9644 + 100.816i −0.0233782 + 0.214959i
\(470\) −189.851 + 476.489i −0.403938 + 1.01381i
\(471\) 140.551i 0.298411i
\(472\) −450.365 96.7671i −0.954162 0.205015i
\(473\) 198.704 0.420094
\(474\) −476.130 189.707i −1.00449 0.400227i
\(475\) 184.186 + 20.0315i 0.387761 + 0.0421715i
\(476\) −4.55352 4.31333i −0.00956622 0.00906161i
\(477\) −86.8972 + 102.303i −0.182174 + 0.214472i
\(478\) 505.386 + 267.939i 1.05729 + 0.560541i
\(479\) 438.909 + 264.083i 0.916303 + 0.551321i 0.893820 0.448426i \(-0.148015\pi\)
0.0224833 + 0.999747i \(0.492843\pi\)
\(480\) 11.8803 + 25.6788i 0.0247506 + 0.0534975i
\(481\) 639.442 + 140.752i 1.32940 + 0.292623i
\(482\) −247.148 + 131.030i −0.512756 + 0.271846i
\(483\) −66.2596 3.59249i −0.137183 0.00743787i
\(484\) 12.2833 + 14.4611i 0.0253788 + 0.0298782i
\(485\) −167.394 760.476i −0.345141 1.56799i
\(486\) −19.2925 25.3788i −0.0396965 0.0522198i
\(487\) −649.044 + 614.807i −1.33274 + 1.26244i −0.393436 + 0.919352i \(0.628714\pi\)
−0.939304 + 0.343086i \(0.888528\pi\)
\(488\) −31.3939 579.027i −0.0643318 1.18653i
\(489\) 443.542 266.870i 0.907038 0.545747i
\(490\) −401.366 272.133i −0.819115 0.555374i
\(491\) 11.3302 40.8077i 0.0230758 0.0831114i −0.951116 0.308835i \(-0.900061\pi\)
0.974191 + 0.225724i \(0.0724747\pi\)
\(492\) 11.4104 1.24096i 0.0231920 0.00252228i
\(493\) −118.883 90.3728i −0.241143 0.183312i
\(494\) 983.451 + 454.993i 1.99079 + 0.921039i
\(495\) 208.865 141.614i 0.421950 0.286089i
\(496\) −260.611 773.465i −0.525425 1.55941i
\(497\) −50.3601 307.183i −0.101328 0.618074i
\(498\) 4.25595 25.9601i 0.00854608 0.0521288i
\(499\) −105.095 35.4107i −0.210612 0.0709634i 0.212018 0.977266i \(-0.431996\pi\)
−0.422630 + 0.906302i \(0.638893\pi\)
\(500\) 5.07571 + 18.2811i 0.0101514 + 0.0365621i
\(501\) 40.4806 + 101.599i 0.0807996 + 0.202792i
\(502\) 141.910 56.5420i 0.282689 0.112633i
\(503\) 4.63556 1.28706i 0.00921582 0.00255876i −0.262917 0.964818i \(-0.584685\pi\)
0.272133 + 0.962260i \(0.412271\pi\)
\(504\) −19.3659 + 57.4758i −0.0384243 + 0.114039i
\(505\) 51.0456 + 8.36851i 0.101080 + 0.0165713i
\(506\) −447.988 + 73.4439i −0.885351 + 0.145146i
\(507\) 277.880 93.6287i 0.548087 0.184672i
\(508\) 14.9880 + 22.1057i 0.0295040 + 0.0435151i
\(509\) 103.991 224.773i 0.204305 0.441598i −0.778155 0.628072i \(-0.783844\pi\)
0.982460 + 0.186475i \(0.0597063\pi\)
\(510\) −159.726 + 210.115i −0.313187 + 0.411991i
\(511\) −8.07034 74.2056i −0.0157932 0.145216i
\(512\) 455.531 + 126.477i 0.889708 + 0.247026i
\(513\) 84.0052 123.898i 0.163753 0.241517i
\(514\) −23.7636 39.4955i −0.0462327 0.0768394i
\(515\) 254.815 13.8157i 0.494786 0.0268265i
\(516\) −2.87497 3.03507i −0.00557165 0.00588192i
\(517\) −534.347 + 406.200i −1.03355 + 0.785686i
\(518\) 184.102 40.5240i 0.355410 0.0782316i
\(519\) −5.75857 + 4.89137i −0.0110955 + 0.00942460i
\(520\) −43.5864 + 803.905i −0.0838201 + 1.54597i
\(521\) 22.5048 + 42.4486i 0.0431955 + 0.0814753i 0.904170 0.427173i \(-0.140490\pi\)
−0.860975 + 0.508648i \(0.830146\pi\)
\(522\) 14.8188 67.3227i 0.0283886 0.128971i
\(523\) 634.925 293.748i 1.21401 0.561659i 0.294846 0.955545i \(-0.404732\pi\)
0.919159 + 0.393886i \(0.128869\pi\)
\(524\) 11.7860 19.5884i 0.0224923 0.0373825i
\(525\) 13.5108 25.4841i 0.0257349 0.0485411i
\(526\) −690.022 586.110i −1.31183 1.11428i
\(527\) 446.819 471.701i 0.847853 0.895068i
\(528\) −46.9101 + 431.331i −0.0888448 + 0.816915i
\(529\) −114.780 + 288.075i −0.216975 + 0.544565i
\(530\) 512.987i 0.967901i
\(531\) 134.326 115.263i 0.252969 0.217067i
\(532\) 13.5951 0.0255547
\(533\) 621.277 + 247.539i 1.16562 + 0.464427i
\(534\) 140.572 + 15.2881i 0.263243 + 0.0286294i
\(535\) 526.711 + 498.927i 0.984506 + 0.932574i
\(536\) −197.950 + 233.045i −0.369310 + 0.434785i
\(537\) 379.925 + 201.424i 0.707496 + 0.375091i
\(538\) 113.349 + 68.1999i 0.210686 + 0.126766i
\(539\) −266.452 575.927i −0.494346 1.06851i
\(540\) −5.18504 1.14131i −0.00960192 0.00211354i
\(541\) −36.9333 + 19.5808i −0.0682686 + 0.0361937i −0.502193 0.864756i \(-0.667473\pi\)
0.433924 + 0.900949i \(0.357128\pi\)
\(542\) 188.815 + 10.2372i 0.348367 + 0.0188879i
\(543\) −20.4468 24.0718i −0.0376552 0.0443311i
\(544\) −8.32486 37.8202i −0.0153031 0.0695225i
\(545\) 112.203 + 147.600i 0.205877 + 0.270826i
\(546\) 122.476 116.015i 0.224315 0.212482i
\(547\) −43.1806 796.420i −0.0789408 1.45598i −0.722919 0.690933i \(-0.757200\pi\)
0.643978 0.765044i \(-0.277283\pi\)
\(548\) 32.0929 19.3096i 0.0585636 0.0352366i
\(549\) 184.422 + 125.041i 0.335923 + 0.227761i
\(550\) 52.7917 190.138i 0.0959848 0.345706i
\(551\) 321.790 34.9968i 0.584011 0.0635150i
\(552\) −159.280 121.081i −0.288550 0.219350i
\(553\) −340.048 157.323i −0.614914 0.284490i
\(554\) 717.328 486.360i 1.29482 0.877907i
\(555\) −110.374 327.580i −0.198873 0.590234i
\(556\) 0.289917 + 1.76842i 0.000521434 + 0.00318061i
\(557\) 149.582 912.412i 0.268550 1.63808i −0.416178 0.909283i \(-0.636631\pi\)
0.684728 0.728799i \(-0.259921\pi\)
\(558\) 284.224 + 95.7661i 0.509361 + 0.171624i
\(559\) −65.1672 234.711i −0.116578 0.419877i
\(560\) 89.7126 + 225.162i 0.160201 + 0.402074i
\(561\) −320.856 + 127.841i −0.571936 + 0.227880i
\(562\) −888.346 + 246.648i −1.58069 + 0.438876i
\(563\) −301.530 + 894.909i −0.535577 + 1.58954i 0.248341 + 0.968673i \(0.420115\pi\)
−0.783918 + 0.620864i \(0.786782\pi\)
\(564\) 13.9357 + 2.28464i 0.0247086 + 0.00405077i
\(565\) −773.547 + 126.817i −1.36911 + 0.224454i
\(566\) 545.773 183.892i 0.964263 0.324898i
\(567\) −13.0783 19.2891i −0.0230658 0.0340196i
\(568\) 394.096 851.823i 0.693830 1.49969i
\(569\) −502.180 + 660.606i −0.882565 + 1.16099i 0.103499 + 0.994630i \(0.466996\pi\)
−0.986064 + 0.166365i \(0.946797\pi\)
\(570\) −61.8536 568.734i −0.108515 0.997780i
\(571\) −543.315 150.851i −0.951516 0.264187i −0.243115 0.969997i \(-0.578169\pi\)
−0.708401 + 0.705810i \(0.750583\pi\)
\(572\) 28.2239 41.6271i 0.0493424 0.0727746i
\(573\) −251.693 418.317i −0.439254 0.730046i
\(574\) 192.265 10.4243i 0.334957 0.0181609i
\(575\) 65.4360 + 69.0799i 0.113802 + 0.120139i
\(576\) −145.266 + 110.428i −0.252197 + 0.191715i
\(577\) 805.209 177.240i 1.39551 0.307175i 0.547345 0.836907i \(-0.315639\pi\)
0.848165 + 0.529733i \(0.177708\pi\)
\(578\) −175.127 + 148.754i −0.302988 + 0.257360i
\(579\) −15.4149 + 284.310i −0.0266232 + 0.491037i
\(580\) −5.37747 10.1430i −0.00927150 0.0174879i
\(581\) 4.13410 18.7814i 0.00711549 0.0323260i
\(582\) −446.506 + 206.576i −0.767193 + 0.354941i
\(583\) −346.092 + 575.210i −0.593640 + 0.986637i
\(584\) 105.421 198.844i 0.180515 0.340487i
\(585\) −235.775 200.269i −0.403034 0.342340i
\(586\) 564.601 596.042i 0.963482 1.01714i
\(587\) −22.0431 + 202.683i −0.0375522 + 0.345287i 0.960256 + 0.279120i \(0.0900426\pi\)
−0.997809 + 0.0661672i \(0.978923\pi\)
\(588\) −4.94170 + 12.4027i −0.00840425 + 0.0210931i
\(589\) 1408.32i 2.39104i
\(590\) 106.089 668.082i 0.179811 1.13234i
\(591\) 280.580 0.474755
\(592\) 552.126 + 219.987i 0.932645 + 0.371600i
\(593\) −513.528 55.8495i −0.865983 0.0941813i −0.335666 0.941981i \(-0.608961\pi\)
−0.530316 + 0.847800i \(0.677927\pi\)
\(594\) −115.749 109.643i −0.194864 0.184585i
\(595\) −124.909 + 147.054i −0.209931 + 0.247150i
\(596\) −27.1961 14.4185i −0.0456311 0.0241921i
\(597\) −170.314 102.474i −0.285283 0.171649i
\(598\) 233.675 + 505.080i 0.390761 + 0.844615i
\(599\) −221.702 48.8003i −0.370120 0.0814696i 0.0260158 0.999662i \(-0.491718\pi\)
−0.396136 + 0.918192i \(0.629649\pi\)
\(600\) 76.8387 40.7373i 0.128064 0.0678955i
\(601\) −433.675 23.5132i −0.721589 0.0391234i −0.310313 0.950634i \(-0.600434\pi\)
−0.411276 + 0.911511i \(0.634917\pi\)
\(602\) −45.4026 53.4521i −0.0754197 0.0887909i
\(603\) −25.2569 114.743i −0.0418853 0.190287i
\(604\) −22.0162 28.9618i −0.0364506 0.0479500i
\(605\) 423.744 401.392i 0.700403 0.663457i
\(606\) −1.76934 32.6336i −0.00291971 0.0538509i
\(607\) −126.432 + 76.0716i −0.208290 + 0.125324i −0.615877 0.787843i \(-0.711198\pi\)
0.407587 + 0.913167i \(0.366370\pi\)
\(608\) 69.4759 + 47.1058i 0.114270 + 0.0774767i
\(609\) 13.4816 48.5564i 0.0221373 0.0797313i
\(610\) 846.556 92.0685i 1.38780 0.150932i
\(611\) 655.051 + 497.957i 1.07210 + 0.814987i
\(612\) 6.59501 + 3.05118i 0.0107762 + 0.00498558i
\(613\) −275.455 + 186.763i −0.449356 + 0.304671i −0.764794 0.644275i \(-0.777159\pi\)
0.315438 + 0.948946i \(0.397849\pi\)
\(614\) 119.986 + 356.107i 0.195418 + 0.579979i
\(615\) −57.1220 348.429i −0.0928813 0.566551i
\(616\) −49.0729 + 299.331i −0.0796637 + 0.485927i
\(617\) −603.406 203.311i −0.977968 0.329516i −0.215473 0.976510i \(-0.569129\pi\)
−0.762495 + 0.646994i \(0.776026\pi\)
\(618\) −43.1337 155.353i −0.0697956 0.251381i
\(619\) −57.8051 145.080i −0.0933847 0.234378i 0.874863 0.484370i \(-0.160951\pi\)
−0.968248 + 0.249992i \(0.919572\pi\)
\(620\) 46.4017 18.4881i 0.0748414 0.0298196i
\(621\) 74.0764 20.5672i 0.119286 0.0331195i
\(622\) −268.938 + 798.180i −0.432376 + 1.28325i
\(623\) 102.007 + 16.7231i 0.163735 + 0.0268429i
\(624\) 524.876 86.0491i 0.841148 0.137899i
\(625\) 705.452 237.694i 1.12872 0.380311i
\(626\) 67.1296 + 99.0087i 0.107236 + 0.158161i
\(627\) 314.346 679.449i 0.501350 1.08365i
\(628\) −8.94991 + 11.7734i −0.0142514 + 0.0187475i
\(629\) 51.1536 + 470.350i 0.0813253 + 0.747774i
\(630\) −85.8189 23.8275i −0.136221 0.0378214i
\(631\) −101.293 + 149.396i −0.160527 + 0.236760i −0.899443 0.437038i \(-0.856028\pi\)
0.738916 + 0.673798i \(0.235338\pi\)
\(632\) −582.427 968.001i −0.921562 1.53165i
\(633\) 575.743 31.2159i 0.909547 0.0493142i
\(634\) −445.621 470.436i −0.702872 0.742013i
\(635\) 654.060 497.204i 1.03002 0.782998i
\(636\) 13.7934 3.03616i 0.0216877 0.00477383i
\(637\) −592.904 + 503.617i −0.930775 + 0.790607i
\(638\) 18.6647 344.249i 0.0292550 0.539576i
\(639\) 168.927 + 318.631i 0.264362 + 0.498640i
\(640\) −163.960 + 744.880i −0.256188 + 1.16387i
\(641\) −982.549 + 454.576i −1.53284 + 0.709166i −0.991314 0.131519i \(-0.958015\pi\)
−0.541524 + 0.840685i \(0.682153\pi\)
\(642\) 236.318 392.764i 0.368097 0.611782i
\(643\) 468.176 883.073i 0.728111 1.37336i −0.191877 0.981419i \(-0.561458\pi\)
0.919989 0.391945i \(-0.128198\pi\)
\(644\) 5.32153 + 4.52015i 0.00826325 + 0.00701887i
\(645\) −88.4404 + 93.3654i −0.137117 + 0.144753i
\(646\) −84.6587 + 778.424i −0.131051 + 1.20499i
\(647\) −414.896 + 1041.31i −0.641262 + 1.60945i 0.143502 + 0.989650i \(0.454164\pi\)
−0.784764 + 0.619795i \(0.787216\pi\)
\(648\) 70.2676i 0.108438i
\(649\) 569.685 677.543i 0.877789 1.04398i
\(650\) −241.907 −0.372164
\(651\) 203.682 + 81.1542i 0.312875 + 0.124661i
\(652\) −54.1471 5.88886i −0.0830478 0.00903199i
\(653\) −303.909 287.878i −0.465405 0.440855i 0.418713 0.908119i \(-0.362481\pi\)
−0.884118 + 0.467264i \(0.845240\pi\)
\(654\) 75.8353 89.2802i 0.115956 0.136514i
\(655\) −621.328 329.407i −0.948592 0.502912i
\(656\) 520.172 + 312.977i 0.792945 + 0.477099i
\(657\) 36.3115 + 78.4859i 0.0552686 + 0.119461i
\(658\) 231.364 + 50.9270i 0.351617 + 0.0773967i
\(659\) 768.928 407.660i 1.16681 0.618603i 0.231640 0.972802i \(-0.425591\pi\)
0.935170 + 0.354198i \(0.115246\pi\)
\(660\) −26.5133 1.43751i −0.0401717 0.00217805i
\(661\) −358.896 422.525i −0.542960 0.639221i 0.420431 0.907325i \(-0.361879\pi\)
−0.963390 + 0.268103i \(0.913603\pi\)
\(662\) −161.013 731.491i −0.243223 1.10497i
\(663\) 256.234 + 337.071i 0.386477 + 0.508402i
\(664\) 42.0966 39.8760i 0.0633985 0.0600542i
\(665\) −22.6417 417.601i −0.0340477 0.627972i
\(666\) −187.138 + 112.597i −0.280987 + 0.169064i
\(667\) 137.594 + 93.2912i 0.206288 + 0.139867i
\(668\) 3.07862 11.0882i 0.00460871 0.0165991i
\(669\) 628.082 68.3081i 0.938838 0.102105i
\(670\) −357.461 271.735i −0.533524 0.405574i
\(671\) 1011.35 + 467.902i 1.50723 + 0.697320i
\(672\) 10.8163 7.33366i 0.0160957 0.0109132i
\(673\) 80.8437 + 239.936i 0.120124 + 0.356517i 0.990799 0.135343i \(-0.0432138\pi\)
−0.870674 + 0.491860i \(0.836317\pi\)
\(674\) 11.6357 + 70.9745i 0.0172636 + 0.105303i
\(675\) −5.40637 + 32.9774i −0.00800944 + 0.0488554i
\(676\) −29.2389 9.85172i −0.0432528 0.0145736i
\(677\) 144.133 + 519.120i 0.212899 + 0.766794i 0.990438 + 0.137959i \(0.0440542\pi\)
−0.777539 + 0.628835i \(0.783532\pi\)
\(678\) 183.314 + 460.082i 0.270374 + 0.678588i
\(679\) −334.107 + 133.121i −0.492058 + 0.196054i
\(680\) −560.551 + 155.636i −0.824340 + 0.228877i
\(681\) 62.4494 185.343i 0.0917025 0.272163i
\(682\) 1480.22 + 242.670i 2.17041 + 0.355821i
\(683\) −1032.25 + 169.229i −1.51135 + 0.247773i −0.859721 0.510763i \(-0.829363\pi\)
−0.651630 + 0.758537i \(0.725915\pi\)
\(684\) −14.9263 + 5.02924i −0.0218220 + 0.00735269i
\(685\) −646.584 953.640i −0.943918 1.39217i
\(686\) −202.996 + 438.769i −0.295913 + 0.639605i
\(687\) −223.185 + 293.595i −0.324869 + 0.427358i
\(688\) −23.9067 219.818i −0.0347481 0.319503i
\(689\) 792.947 + 220.161i 1.15087 + 0.319536i
\(690\) 164.884 243.185i 0.238962 0.352442i
\(691\) −594.532 988.119i −0.860393 1.42998i −0.902415 0.430868i \(-0.858208\pi\)
0.0420220 0.999117i \(-0.486620\pi\)
\(692\) 0.793839 0.0430407i 0.00114717 6.21976e-5i
\(693\) −80.1528 84.6163i −0.115661 0.122101i
\(694\) −210.123 + 159.732i −0.302771 + 0.230161i
\(695\) 53.8377 11.8506i 0.0774644 0.0170512i
\(696\) 115.806 98.3662i 0.166387 0.141331i
\(697\) −26.1631 + 482.550i −0.0375367 + 0.692324i
\(698\) −297.916 561.929i −0.426814 0.805056i
\(699\) 17.5408 79.6887i 0.0250942 0.114004i
\(700\) −2.75450 + 1.27437i −0.00393500 + 0.00182052i
\(701\) 101.014 167.887i 0.144100 0.239496i −0.776398 0.630242i \(-0.782955\pi\)
0.920498 + 0.390746i \(0.127783\pi\)
\(702\) −91.5504 + 172.682i −0.130414 + 0.245986i
\(703\) −781.610 663.906i −1.11182 0.944390i
\(704\) −627.585 + 662.534i −0.891457 + 0.941099i
\(705\) 46.9684 431.868i 0.0666219 0.612578i
\(706\) −106.991 + 268.528i −0.151546 + 0.380351i
\(707\) 23.8913i 0.0337925i
\(708\) −18.5915 + 1.10155i −0.0262592 + 0.00155586i
\(709\) 1340.77 1.89107 0.945536 0.325517i \(-0.105538\pi\)
0.945536 + 0.325517i \(0.105538\pi\)
\(710\) 1280.40 + 510.157i 1.80338 + 0.718531i
\(711\) 431.542 + 46.9330i 0.606950 + 0.0660098i
\(712\) 226.273 + 214.337i 0.317799 + 0.301035i
\(713\) −468.244 + 551.259i −0.656723 + 0.773154i
\(714\) 107.703 + 57.1005i 0.150845 + 0.0799727i
\(715\) −1325.67 797.627i −1.85408 1.11556i
\(716\) −18.9987 41.0650i −0.0265345 0.0573533i
\(717\) −473.143 104.147i −0.659892 0.145253i
\(718\) −331.911 + 175.968i −0.462272 + 0.245081i
\(719\) 49.9595 + 2.70872i 0.0694846 + 0.00376735i 0.0888485 0.996045i \(-0.471681\pi\)
−0.0193638 + 0.999813i \(0.506164\pi\)
\(720\) −181.791 214.021i −0.252487 0.297251i
\(721\) −25.3374 115.109i −0.0351420 0.159652i
\(722\) −580.335 763.418i −0.803788 1.05737i
\(723\) 172.003 162.930i 0.237901 0.225352i
\(724\) 0.179917 + 3.31838i 0.000248505 + 0.00458340i
\(725\) −61.9173 + 37.2544i −0.0854031 + 0.0513853i
\(726\) −305.226 206.948i −0.420422 0.285053i
\(727\) 0.923583 3.32645i 0.00127040 0.00457558i −0.962912 0.269815i \(-0.913037\pi\)
0.964182 + 0.265240i \(0.0854511\pi\)
\(728\) 369.666 40.2036i 0.507783 0.0552248i
\(729\) 21.4945 + 16.3397i 0.0294849 + 0.0224139i
\(730\) 299.955 + 138.774i 0.410897 + 0.190101i
\(731\) 145.689 98.7794i 0.199300 0.135129i
\(732\) −7.48598 22.2176i −0.0102267 0.0303519i
\(733\) 217.294 + 1325.44i 0.296445 + 1.80824i 0.543694 + 0.839284i \(0.317025\pi\)
−0.247249 + 0.968952i \(0.579526\pi\)
\(734\) −29.6282 + 180.724i −0.0403654 + 0.246218i
\(735\) 389.205 + 131.139i 0.529531 + 0.178420i
\(736\) 11.5330 + 41.5383i 0.0156699 + 0.0564379i
\(737\) −217.490 545.859i −0.295102 0.740650i
\(738\) −207.235 + 82.5699i −0.280806 + 0.111883i
\(739\) 259.477 72.0435i 0.351119 0.0974878i −0.0874905 0.996165i \(-0.527885\pi\)
0.438610 + 0.898678i \(0.355471\pi\)
\(740\) −11.6137 + 34.4683i −0.0156942 + 0.0465788i
\(741\) −905.663 148.476i −1.22222 0.200372i
\(742\) 233.813 38.3317i 0.315112 0.0516600i
\(743\) −370.580 + 124.863i −0.498761 + 0.168052i −0.557428 0.830225i \(-0.688212\pi\)
0.0586666 + 0.998278i \(0.481315\pi\)
\(744\) 370.993 + 547.174i 0.498646 + 0.735448i
\(745\) −397.600 + 859.398i −0.533691 + 1.15355i
\(746\) 663.371 872.649i 0.889237 1.16977i
\(747\) 2.40893 + 22.1497i 0.00322480 + 0.0296516i
\(748\) 35.0173 + 9.72250i 0.0468145 + 0.0129980i
\(749\) 188.047 277.349i 0.251065 0.370293i
\(750\) −190.109 315.964i −0.253479 0.421286i
\(751\) −163.370 + 8.85768i −0.217537 + 0.0117945i −0.162585 0.986695i \(-0.551983\pi\)
−0.0549517 + 0.998489i \(0.517500\pi\)
\(752\) 513.651 + 542.255i 0.683047 + 0.721083i
\(753\) −102.998 + 78.2967i −0.136783 + 0.103980i
\(754\) −412.751 + 90.8535i −0.547416 + 0.120495i
\(755\) −852.955 + 724.507i −1.12974 + 0.959611i
\(756\) −0.132757 + 2.44856i −0.000175604 + 0.00323883i
\(757\) 109.527 + 206.590i 0.144686 + 0.272906i 0.945254 0.326335i \(-0.105814\pi\)
−0.800569 + 0.599241i \(0.795469\pi\)
\(758\) 31.8670 144.773i 0.0420408 0.190993i
\(759\) 348.950 161.442i 0.459750 0.212703i
\(760\) 650.106 1080.48i 0.855402 1.42169i
\(761\) −452.605 + 853.704i −0.594751 + 1.12182i 0.385248 + 0.922813i \(0.374116\pi\)
−0.979998 + 0.199006i \(0.936229\pi\)
\(762\) −395.627 336.049i −0.519196 0.441009i
\(763\) 58.8902 62.1696i 0.0771824 0.0814805i
\(764\) −5.55395 + 51.0677i −0.00726956 + 0.0668425i
\(765\) 82.7397 207.661i 0.108156 0.271452i
\(766\) 267.117i 0.348717i
\(767\) −987.153 450.709i −1.28703 0.587626i
\(768\) 60.4835 0.0787545
\(769\) 595.839 + 237.404i 0.774823 + 0.308718i 0.723827 0.689981i \(-0.242381\pi\)
0.0509958 + 0.998699i \(0.483760\pi\)
\(770\) −442.824 48.1600i −0.575096 0.0625454i
\(771\) 28.3419 + 26.8468i 0.0367599 + 0.0348208i
\(772\) 19.3953 22.8339i 0.0251234 0.0295776i
\(773\) 266.727 + 141.410i 0.345055 + 0.182936i 0.631918 0.775035i \(-0.282268\pi\)