Properties

Label 1764.4.bm
Level $1764$
Weight $4$
Character orbit 1764.bm
Rep. character $\chi_{1764}(1685,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $240$
Sturm bound $1344$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1764.bm (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 63 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(1344\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(1764, [\chi])\).

Total New Old
Modular forms 2064 240 1824
Cusp forms 1968 240 1728
Eisenstein series 96 0 96

Trace form

\( 240 q + 46 q^{9} - 36 q^{13} - 174 q^{15} - 72 q^{17} + 6000 q^{25} - 396 q^{27} - 42 q^{29} + 90 q^{31} - 108 q^{33} - 84 q^{37} - 1678 q^{39} - 618 q^{41} + 42 q^{43} + 1014 q^{45} - 198 q^{47} - 732 q^{51}+ \cdots - 3574 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(1764, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(1764, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(1764, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(441, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(882, [\chi])\)\(^{\oplus 2}\)