Properties

Label 176.1
Level 176
Weight 1
Dimension 1
Nonzero newspaces 1
Newform subspaces 1
Sturm bound 1920
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 1 \)
Sturm bound: \(1920\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(176))\).

Total New Old
Modular forms 152 42 110
Cusp forms 12 1 11
Eisenstein series 140 41 99

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 1 0 0 0

Trace form

\( q + q^{3} - q^{5} - q^{11} - q^{15} + q^{23} - q^{27} + q^{31} - q^{33} - q^{37} - 2 q^{47} + q^{49} + 2 q^{53} + q^{55} + q^{59} + q^{67} + q^{69} + q^{71} - q^{81} - q^{89} + q^{93}+ \cdots - q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(176))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
176.1.b \(\chi_{176}(153, \cdot)\) None 0 1
176.1.d \(\chi_{176}(111, \cdot)\) None 0 1
176.1.f \(\chi_{176}(23, \cdot)\) None 0 1
176.1.h \(\chi_{176}(65, \cdot)\) 176.1.h.a 1 1
176.1.k \(\chi_{176}(67, \cdot)\) None 0 2
176.1.l \(\chi_{176}(21, \cdot)\) None 0 2
176.1.n \(\chi_{176}(17, \cdot)\) None 0 4
176.1.p \(\chi_{176}(71, \cdot)\) None 0 4
176.1.r \(\chi_{176}(15, \cdot)\) None 0 4
176.1.t \(\chi_{176}(41, \cdot)\) None 0 4
176.1.u \(\chi_{176}(13, \cdot)\) None 0 8
176.1.v \(\chi_{176}(3, \cdot)\) None 0 8

Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(176))\) into lower level spaces

\( S_{1}^{\mathrm{old}}(\Gamma_1(176)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 5}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(44))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(88))\)\(^{\oplus 2}\)