Properties

Label 175.2.h
Level $175$
Weight $2$
Character orbit 175.h
Rep. character $\chi_{175}(36,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $64$
Newform subspaces $3$
Sturm bound $40$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.h (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{5})\)
Newform subspaces: \( 3 \)
Sturm bound: \(40\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(175, [\chi])\).

Total New Old
Modular forms 88 64 24
Cusp forms 72 64 8
Eisenstein series 16 0 16

Trace form

\( 64 q - 2 q^{2} - 4 q^{3} - 18 q^{4} + 4 q^{5} - 6 q^{8} - 24 q^{9} - 14 q^{10} - 8 q^{11} + 8 q^{12} - 24 q^{13} - 4 q^{14} + 2 q^{15} + 2 q^{16} - 16 q^{17} + 4 q^{18} + 12 q^{19} + 8 q^{20} - 4 q^{21}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(175, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
175.2.h.a 175.h 25.d $4$ $1.397$ \(\Q(\zeta_{10})\) None 175.2.h.a \(-5\) \(-4\) \(-5\) \(-4\) $\mathrm{SU}(2)[C_{5}]$ \(q+(-1-\zeta_{10}+\zeta_{10}^{2}+\zeta_{10}^{3})q^{2}+\cdots\)
175.2.h.b 175.h 25.d $28$ $1.397$ None 175.2.h.b \(6\) \(4\) \(8\) \(-28\) $\mathrm{SU}(2)[C_{5}]$
175.2.h.c 175.h 25.d $32$ $1.397$ None 175.2.h.c \(-3\) \(-4\) \(1\) \(32\) $\mathrm{SU}(2)[C_{5}]$

Decomposition of \(S_{2}^{\mathrm{old}}(175, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(175, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 2}\)