Properties

Label 174.2.d
Level $174$
Weight $2$
Character orbit 174.d
Rep. character $\chi_{174}(115,\cdot)$
Character field $\Q$
Dimension $6$
Newform subspaces $2$
Sturm bound $60$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 174 = 2 \cdot 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 174.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 29 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(60\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(174, [\chi])\).

Total New Old
Modular forms 34 6 28
Cusp forms 26 6 20
Eisenstein series 8 0 8

Trace form

\( 6 q - 6 q^{4} - 2 q^{6} + 4 q^{7} - 6 q^{9} + 4 q^{13} + 6 q^{16} - 16 q^{22} + 2 q^{24} + 6 q^{25} - 4 q^{28} - 20 q^{29} + 4 q^{30} - 16 q^{33} - 16 q^{34} + 40 q^{35} + 6 q^{36} + 16 q^{38} + 8 q^{42}+ \cdots - 2 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(174, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
174.2.d.a 174.d 29.b $2$ $1.389$ \(\Q(\sqrt{-1}) \) None 174.2.d.a \(0\) \(0\) \(2\) \(6\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}-i q^{3}-q^{4}+q^{5}+q^{6}+\cdots\)
174.2.d.b 174.d 29.b $4$ $1.389$ \(\Q(i, \sqrt{33})\) None 174.2.d.b \(0\) \(0\) \(-2\) \(-2\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{2}+\beta _{2}q^{3}-q^{4}+(-1+\beta _{3})q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(174, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(174, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(29, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(58, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(87, [\chi])\)\(^{\oplus 2}\)