Defining parameters
| Level: | \( N \) | \(=\) | \( 17298 = 2 \cdot 3^{2} \cdot 31^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 17298.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 96 \) | ||
| Sturm bound: | \(5952\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(17298))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 3104 | 388 | 2716 |
| Cusp forms | 2849 | 388 | 2461 |
| Eisenstein series | 255 | 0 | 255 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(31\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(376\) | \(43\) | \(333\) | \(345\) | \(43\) | \(302\) | \(31\) | \(0\) | \(31\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(400\) | \(35\) | \(365\) | \(368\) | \(35\) | \(333\) | \(32\) | \(0\) | \(32\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(392\) | \(60\) | \(332\) | \(360\) | \(60\) | \(300\) | \(32\) | \(0\) | \(32\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(384\) | \(56\) | \(328\) | \(352\) | \(56\) | \(296\) | \(32\) | \(0\) | \(32\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(392\) | \(43\) | \(349\) | \(360\) | \(43\) | \(317\) | \(32\) | \(0\) | \(32\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(384\) | \(35\) | \(349\) | \(352\) | \(35\) | \(317\) | \(32\) | \(0\) | \(32\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(392\) | \(52\) | \(340\) | \(360\) | \(52\) | \(308\) | \(32\) | \(0\) | \(32\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(384\) | \(64\) | \(320\) | \(352\) | \(64\) | \(288\) | \(32\) | \(0\) | \(32\) | |||
| Plus space | \(+\) | \(1536\) | \(186\) | \(1350\) | \(1409\) | \(186\) | \(1223\) | \(127\) | \(0\) | \(127\) | |||||
| Minus space | \(-\) | \(1568\) | \(202\) | \(1366\) | \(1440\) | \(202\) | \(1238\) | \(128\) | \(0\) | \(128\) | |||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(17298))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | 31 | |||||||
| 17298.2.a.a | $1$ | $138.125$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(-3\) | $+$ | $-$ | $-$ | \(q-q^{2}+q^{4}-q^{5}-3q^{7}-q^{8}+q^{10}+\cdots\) | |
| 17298.2.a.b | $1$ | $138.125$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(-3\) | $+$ | $-$ | $+$ | \(q-q^{2}+q^{4}-q^{5}-3q^{7}-q^{8}+q^{10}+\cdots\) | |
| 17298.2.a.c | $1$ | $138.125$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(-2\) | $+$ | $-$ | $-$ | \(q-q^{2}+q^{4}-q^{5}-2q^{7}-q^{8}+q^{10}+\cdots\) | |
| 17298.2.a.d | $1$ | $138.125$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(0\) | $+$ | $+$ | $-$ | \(q-q^{2}+q^{4}-q^{5}-q^{8}+q^{10}+3q^{11}+\cdots\) | |
| 17298.2.a.e | $1$ | $138.125$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(2\) | $+$ | $+$ | $-$ | \(q-q^{2}+q^{4}+q^{5}+2q^{7}-q^{8}-q^{10}+\cdots\) | |
| 17298.2.a.f | $1$ | $138.125$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(2\) | $+$ | $+$ | $-$ | \(q-q^{2}+q^{4}+q^{5}+2q^{7}-q^{8}-q^{10}+\cdots\) | |
| 17298.2.a.g | $1$ | $138.125$ | \(\Q\) | None | \(-1\) | \(0\) | \(2\) | \(0\) | $+$ | $-$ | $-$ | \(q-q^{2}+q^{4}+2q^{5}-q^{8}-2q^{10}-2q^{13}+\cdots\) | |
| 17298.2.a.h | $1$ | $138.125$ | \(\Q\) | None | \(-1\) | \(0\) | \(2\) | \(1\) | $+$ | $-$ | $+$ | \(q-q^{2}+q^{4}+2q^{5}+q^{7}-q^{8}-2q^{10}+\cdots\) | |
| 17298.2.a.i | $1$ | $138.125$ | \(\Q\) | None | \(-1\) | \(0\) | \(2\) | \(1\) | $+$ | $-$ | $-$ | \(q-q^{2}+q^{4}+2q^{5}+q^{7}-q^{8}-2q^{10}+\cdots\) | |
| 17298.2.a.j | $1$ | $138.125$ | \(\Q\) | None | \(-1\) | \(0\) | \(3\) | \(-4\) | $+$ | $+$ | $-$ | \(q-q^{2}+q^{4}+3q^{5}-4q^{7}-q^{8}-3q^{10}+\cdots\) | |
| 17298.2.a.k | $1$ | $138.125$ | \(\Q\) | None | \(1\) | \(0\) | \(-3\) | \(-4\) | $-$ | $+$ | $-$ | \(q+q^{2}+q^{4}-3q^{5}-4q^{7}+q^{8}-3q^{10}+\cdots\) | |
| 17298.2.a.l | $1$ | $138.125$ | \(\Q\) | None | \(1\) | \(0\) | \(-3\) | \(-2\) | $-$ | $-$ | $-$ | \(q+q^{2}+q^{4}-3q^{5}-2q^{7}+q^{8}-3q^{10}+\cdots\) | |
| 17298.2.a.m | $1$ | $138.125$ | \(\Q\) | None | \(1\) | \(0\) | \(-2\) | \(-1\) | $-$ | $-$ | $+$ | \(q+q^{2}+q^{4}-2q^{5}-q^{7}+q^{8}-2q^{10}+\cdots\) | |
| 17298.2.a.n | $1$ | $138.125$ | \(\Q\) | None | \(1\) | \(0\) | \(-2\) | \(-1\) | $-$ | $-$ | $-$ | \(q+q^{2}+q^{4}-2q^{5}-q^{7}+q^{8}-2q^{10}+\cdots\) | |
| 17298.2.a.o | $1$ | $138.125$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(-4\) | $-$ | $-$ | $-$ | \(q+q^{2}+q^{4}-q^{5}-4q^{7}+q^{8}-q^{10}+\cdots\) | |
| 17298.2.a.p | $1$ | $138.125$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(-4\) | $-$ | $-$ | $-$ | \(q+q^{2}+q^{4}-q^{5}-4q^{7}+q^{8}-q^{10}+\cdots\) | |
| 17298.2.a.q | $1$ | $138.125$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(2\) | $-$ | $+$ | $-$ | \(q+q^{2}+q^{4}-q^{5}+2q^{7}+q^{8}-q^{10}+\cdots\) | |
| 17298.2.a.r | $1$ | $138.125$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(2\) | $-$ | $+$ | $-$ | \(q+q^{2}+q^{4}-q^{5}+2q^{7}+q^{8}-q^{10}+\cdots\) | |
| 17298.2.a.s | $1$ | $138.125$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(0\) | $-$ | $+$ | $-$ | \(q+q^{2}+q^{4}+q^{5}+q^{8}+q^{10}-3q^{11}+\cdots\) | |
| 17298.2.a.t | $1$ | $138.125$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(2\) | $-$ | $-$ | $-$ | \(q+q^{2}+q^{4}+q^{5}+2q^{7}+q^{8}+q^{10}+\cdots\) | |
| 17298.2.a.u | $1$ | $138.125$ | \(\Q\) | None | \(1\) | \(0\) | \(3\) | \(-1\) | $-$ | $-$ | $+$ | \(q+q^{2}+q^{4}+3q^{5}-q^{7}+q^{8}+3q^{10}+\cdots\) | |
| 17298.2.a.v | $1$ | $138.125$ | \(\Q\) | None | \(1\) | \(0\) | \(3\) | \(-1\) | $-$ | $-$ | $-$ | \(q+q^{2}+q^{4}+3q^{5}-q^{7}+q^{8}+3q^{10}+\cdots\) | |
| 17298.2.a.w | $2$ | $138.125$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(0\) | \(-4\) | \(-3\) | $+$ | $+$ | $-$ | ||
| 17298.2.a.x | $2$ | $138.125$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(0\) | \(-4\) | \(-3\) | $+$ | $+$ | $+$ | ||
| 17298.2.a.y | $2$ | $138.125$ | \(\Q(\sqrt{17}) \) | None | \(-2\) | \(0\) | \(-3\) | \(2\) | $+$ | $-$ | $-$ | ||
| 17298.2.a.z | $2$ | $138.125$ | \(\Q(\sqrt{41}) \) | None | \(-2\) | \(0\) | \(-1\) | \(0\) | $+$ | $-$ | $-$ | ||
| 17298.2.a.ba | $2$ | $138.125$ | \(\Q(\sqrt{41}) \) | None | \(-2\) | \(0\) | \(-1\) | \(0\) | $+$ | $-$ | $-$ | ||
| 17298.2.a.bb | $2$ | $138.125$ | \(\Q(\sqrt{2}) \) | None | \(-2\) | \(0\) | \(0\) | \(2\) | $+$ | $-$ | $+$ | ||
| 17298.2.a.bc | $2$ | $138.125$ | \(\Q(\sqrt{2}) \) | None | \(-2\) | \(0\) | \(0\) | \(2\) | $+$ | $-$ | $-$ | ||
| 17298.2.a.bd | $2$ | $138.125$ | \(\Q(\sqrt{2}) \) | None | \(-2\) | \(0\) | \(2\) | \(0\) | $+$ | $+$ | $-$ | ||
| 17298.2.a.be | $2$ | $138.125$ | \(\Q(\sqrt{2}) \) | None | \(-2\) | \(0\) | \(2\) | \(0\) | $+$ | $+$ | $-$ | ||
| 17298.2.a.bf | $2$ | $138.125$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(0\) | \(3\) | \(5\) | $+$ | $+$ | $+$ | ||
| 17298.2.a.bg | $2$ | $138.125$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(0\) | \(3\) | \(5\) | $+$ | $+$ | $-$ | ||
| 17298.2.a.bh | $2$ | $138.125$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(0\) | \(-3\) | \(5\) | $-$ | $+$ | $-$ | ||
| 17298.2.a.bi | $2$ | $138.125$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(0\) | \(-3\) | \(5\) | $-$ | $+$ | $+$ | ||
| 17298.2.a.bj | $2$ | $138.125$ | \(\Q(\sqrt{2}) \) | None | \(2\) | \(0\) | \(-2\) | \(0\) | $-$ | $+$ | $-$ | ||
| 17298.2.a.bk | $2$ | $138.125$ | \(\Q(\sqrt{2}) \) | None | \(2\) | \(0\) | \(-2\) | \(0\) | $-$ | $+$ | $-$ | ||
| 17298.2.a.bl | $2$ | $138.125$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(0\) | \(-1\) | \(1\) | $-$ | $-$ | $+$ | ||
| 17298.2.a.bm | $2$ | $138.125$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(0\) | \(-1\) | \(1\) | $-$ | $-$ | $-$ | ||
| 17298.2.a.bn | $2$ | $138.125$ | \(\Q(\sqrt{19}) \) | None | \(2\) | \(0\) | \(0\) | \(0\) | $-$ | $-$ | $-$ | ||
| 17298.2.a.bo | $2$ | $138.125$ | \(\Q(\sqrt{19}) \) | None | \(2\) | \(0\) | \(0\) | \(0\) | $-$ | $-$ | $+$ | ||
| 17298.2.a.bp | $2$ | $138.125$ | \(\Q(\sqrt{3}) \) | None | \(2\) | \(0\) | \(0\) | \(4\) | $-$ | $-$ | $-$ | ||
| 17298.2.a.bq | $2$ | $138.125$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(0\) | \(2\) | \(-1\) | $-$ | $-$ | $+$ | ||
| 17298.2.a.br | $2$ | $138.125$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(0\) | \(2\) | \(-1\) | $-$ | $-$ | $-$ | ||
| 17298.2.a.bs | $2$ | $138.125$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(0\) | \(4\) | \(-3\) | $-$ | $+$ | $+$ | ||
| 17298.2.a.bt | $2$ | $138.125$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(0\) | \(4\) | \(-3\) | $-$ | $+$ | $-$ | ||
| 17298.2.a.bu | $2$ | $138.125$ | \(\Q(\sqrt{10}) \) | not computed | \(2\) | \(0\) | \(4\) | \(4\) | $-$ | $-$ | $-$ | ||
| 17298.2.a.bv | $2$ | $138.125$ | \(\Q(\sqrt{2}) \) | None | \(2\) | \(0\) | \(6\) | \(4\) | $-$ | $-$ | $-$ | ||
| 17298.2.a.bw | $2$ | $138.125$ | \(\Q(\sqrt{2}) \) | None | \(2\) | \(0\) | \(6\) | \(4\) | $-$ | $-$ | $-$ | ||
| 17298.2.a.bx | $3$ | $138.125$ | 3.3.2292.1 | None | \(-3\) | \(0\) | \(2\) | \(1\) | $+$ | $+$ | $+$ | ||
| 17298.2.a.by | $3$ | $138.125$ | 3.3.2292.1 | None | \(-3\) | \(0\) | \(2\) | \(1\) | $+$ | $+$ | $-$ | ||
| 17298.2.a.bz | $3$ | $138.125$ | 3.3.2292.1 | None | \(3\) | \(0\) | \(-2\) | \(1\) | $-$ | $+$ | $-$ | ||
| 17298.2.a.ca | $3$ | $138.125$ | 3.3.2292.1 | None | \(3\) | \(0\) | \(-2\) | \(1\) | $-$ | $+$ | $+$ | ||
| 17298.2.a.cb | $4$ | $138.125$ | \(\Q(\zeta_{16})^+\) | None | \(-4\) | \(0\) | \(-4\) | \(0\) | $+$ | $-$ | $-$ | ||
| 17298.2.a.cc | $4$ | $138.125$ | \(\Q(\zeta_{16})^+\) | None | \(-4\) | \(0\) | \(-4\) | \(0\) | $+$ | $-$ | $-$ | ||
| 17298.2.a.cd | $4$ | $138.125$ | 4.4.19225.1 | None | \(-4\) | \(0\) | \(-1\) | \(4\) | $+$ | $-$ | $-$ | ||
| 17298.2.a.ce | $4$ | $138.125$ | 4.4.19225.1 | None | \(-4\) | \(0\) | \(-1\) | \(4\) | $+$ | $-$ | $+$ | ||
| 17298.2.a.cf | $4$ | $138.125$ | \(\Q(\zeta_{15})^+\) | None | \(-4\) | \(0\) | \(1\) | \(3\) | $+$ | $-$ | $+$ | ||
| 17298.2.a.cg | $4$ | $138.125$ | \(\Q(\zeta_{15})^+\) | None | \(-4\) | \(0\) | \(1\) | \(3\) | $+$ | $-$ | $-$ | ||
| 17298.2.a.ch | $4$ | $138.125$ | 4.4.4525.1 | None | \(-4\) | \(0\) | \(2\) | \(-4\) | $+$ | $-$ | $+$ | ||
| 17298.2.a.ci | $4$ | $138.125$ | 4.4.22592.1 | None | \(-4\) | \(0\) | \(2\) | \(-4\) | $+$ | $-$ | $-$ | ||
| 17298.2.a.cj | $4$ | $138.125$ | 4.4.22592.1 | None | \(-4\) | \(0\) | \(2\) | \(-4\) | $+$ | $-$ | $-$ | ||
| 17298.2.a.ck | $4$ | $138.125$ | 4.4.4525.1 | None | \(-4\) | \(0\) | \(2\) | \(-4\) | $+$ | $-$ | $-$ | ||
| 17298.2.a.cl | $4$ | $138.125$ | \(\Q(\zeta_{15})^+\) | None | \(-4\) | \(0\) | \(3\) | \(-11\) | $+$ | $-$ | $-$ | ||
| 17298.2.a.cm | $4$ | $138.125$ | \(\Q(\zeta_{15})^+\) | None | \(-4\) | \(0\) | \(3\) | \(-11\) | $+$ | $-$ | $+$ | ||
| 17298.2.a.cn | $4$ | $138.125$ | \(\Q(\zeta_{16})^+\) | not computed | \(-4\) | \(0\) | \(8\) | \(-8\) | $+$ | $-$ | $-$ | ||
| 17298.2.a.co | $4$ | $138.125$ | \(\Q(\zeta_{15})^+\) | None | \(4\) | \(0\) | \(-5\) | \(-7\) | $-$ | $-$ | $-$ | ||
| 17298.2.a.cp | $4$ | $138.125$ | \(\Q(\zeta_{15})^+\) | None | \(4\) | \(0\) | \(-5\) | \(-7\) | $-$ | $-$ | $+$ | ||
| 17298.2.a.cq | $4$ | $138.125$ | \(\Q(\sqrt{2}, \sqrt{5})\) | not computed | \(4\) | \(0\) | \(-4\) | \(0\) | $-$ | $-$ | $-$ | ||
| 17298.2.a.cr | $4$ | $138.125$ | \(\Q(\zeta_{15})^+\) | None | \(4\) | \(0\) | \(-3\) | \(1\) | $-$ | $-$ | $+$ | ||
| 17298.2.a.cs | $4$ | $138.125$ | \(\Q(\zeta_{15})^+\) | None | \(4\) | \(0\) | \(-3\) | \(1\) | $-$ | $-$ | $-$ | ||
| 17298.2.a.ct | $4$ | $138.125$ | 4.4.8725.1 | None | \(4\) | \(0\) | \(0\) | \(-2\) | $-$ | $-$ | $-$ | ||
| 17298.2.a.cu | $4$ | $138.125$ | 4.4.8725.1 | None | \(4\) | \(0\) | \(0\) | \(-2\) | $-$ | $-$ | $+$ | ||
| 17298.2.a.cv | $4$ | $138.125$ | \(\Q(\zeta_{15})^+\) | None | \(4\) | \(0\) | \(0\) | \(7\) | $-$ | $-$ | $+$ | ||
| 17298.2.a.cw | $4$ | $138.125$ | \(\Q(\zeta_{15})^+\) | None | \(4\) | \(0\) | \(0\) | \(7\) | $-$ | $-$ | $-$ | ||
| 17298.2.a.cx | $4$ | $138.125$ | \(\Q(\zeta_{16})^+\) | not computed | \(4\) | \(0\) | \(0\) | \(8\) | $-$ | $-$ | $-$ | ||
| 17298.2.a.cy | $4$ | $138.125$ | \(\Q(\zeta_{15})^+\) | None | \(4\) | \(0\) | \(7\) | \(1\) | $-$ | $-$ | $-$ | ||
| 17298.2.a.cz | $4$ | $138.125$ | \(\Q(\zeta_{15})^+\) | None | \(4\) | \(0\) | \(7\) | \(1\) | $-$ | $-$ | $+$ | ||
| 17298.2.a.da | $8$ | $138.125$ | 8.8.\(\cdots\).1 | None | \(-8\) | \(0\) | \(-5\) | \(8\) | $+$ | $-$ | $-$ | ||
| 17298.2.a.db | $8$ | $138.125$ | 8.8.\(\cdots\).1 | None | \(-8\) | \(0\) | \(-5\) | \(8\) | $+$ | $-$ | $+$ | ||
| 17298.2.a.dc | $8$ | $138.125$ | \(\Q(\zeta_{32})^+\) | None | \(-8\) | \(0\) | \(8\) | \(0\) | $+$ | $-$ | $+$ | ||
| 17298.2.a.dd | $8$ | $138.125$ | 8.8.4848615424.1 | not computed | \(-8\) | \(0\) | \(8\) | \(0\) | $+$ | $+$ | $-$ | ||
| 17298.2.a.de | $8$ | $138.125$ | \(\Q(\zeta_{32})^+\) | None | \(-8\) | \(0\) | \(8\) | \(0\) | $+$ | $-$ | $+$ | ||
| 17298.2.a.df | $8$ | $138.125$ | \(\Q(\zeta_{32})^+\) | None | \(8\) | \(0\) | \(-8\) | \(0\) | $-$ | $-$ | $+$ | ||
| 17298.2.a.dg | $8$ | $138.125$ | 8.8.4848615424.1 | not computed | \(8\) | \(0\) | \(-8\) | \(0\) | $-$ | $+$ | $-$ | ||
| 17298.2.a.dh | $8$ | $138.125$ | \(\Q(\zeta_{32})^+\) | None | \(8\) | \(0\) | \(-8\) | \(0\) | $-$ | $-$ | $+$ | ||
| 17298.2.a.di | $8$ | $138.125$ | \(\Q(\zeta_{32})^+\) | not computed | \(8\) | \(0\) | \(0\) | \(-16\) | $-$ | $-$ | $+$ | ||
| 17298.2.a.dj | $8$ | $138.125$ | 8.8.\(\cdots\).1 | None | \(8\) | \(0\) | \(4\) | \(0\) | $-$ | $-$ | $-$ | ||
| 17298.2.a.dk | $8$ | $138.125$ | 8.8.\(\cdots\).1 | None | \(8\) | \(0\) | \(4\) | \(0\) | $-$ | $-$ | $-$ | ||
| 17298.2.a.dl | $12$ | $138.125$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(-12\) | \(0\) | \(-2\) | \(-1\) | $+$ | $+$ | $+$ | ||
| 17298.2.a.dm | $12$ | $138.125$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(-12\) | \(0\) | \(-2\) | \(-1\) | $+$ | $+$ | $-$ | ||
| 17298.2.a.dn | $12$ | $138.125$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(12\) | \(0\) | \(2\) | \(-1\) | $-$ | $+$ | $-$ | ||
| 17298.2.a.do | $12$ | $138.125$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(12\) | \(0\) | \(2\) | \(-1\) | $-$ | $+$ | $+$ | ||
| 17298.2.a.dp | $16$ | $138.125$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | not computed | \(-16\) | \(0\) | \(-16\) | \(16\) | $+$ | $-$ | $+$ | ||
| 17298.2.a.dq | $24$ | $138.125$ | not computed | \(-24\) | \(0\) | \(-16\) | \(0\) | $+$ | $+$ | $+$ | |||
| 17298.2.a.dr | $24$ | $138.125$ | not computed | \(24\) | \(0\) | \(16\) | \(0\) | $-$ | $+$ | $+$ | |||
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(17298))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(17298)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(31))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(62))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(93))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(186))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(279))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(558))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(961))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1922))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2883))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(5766))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(8649))\)\(^{\oplus 2}\)