Properties

Label 17298.2.a
Level $17298$
Weight $2$
Character orbit 17298.a
Rep. character $\chi_{17298}(1,\cdot)$
Character field $\Q$
Dimension $388$
Newform subspaces $96$
Sturm bound $5952$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 17298 = 2 \cdot 3^{2} \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 17298.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 96 \)
Sturm bound: \(5952\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(17298))\).

Total New Old
Modular forms 3104 388 2716
Cusp forms 2849 388 2461
Eisenstein series 255 0 255

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(31\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(376\)\(43\)\(333\)\(345\)\(43\)\(302\)\(31\)\(0\)\(31\)
\(+\)\(+\)\(-\)\(-\)\(400\)\(35\)\(365\)\(368\)\(35\)\(333\)\(32\)\(0\)\(32\)
\(+\)\(-\)\(+\)\(-\)\(392\)\(60\)\(332\)\(360\)\(60\)\(300\)\(32\)\(0\)\(32\)
\(+\)\(-\)\(-\)\(+\)\(384\)\(56\)\(328\)\(352\)\(56\)\(296\)\(32\)\(0\)\(32\)
\(-\)\(+\)\(+\)\(-\)\(392\)\(43\)\(349\)\(360\)\(43\)\(317\)\(32\)\(0\)\(32\)
\(-\)\(+\)\(-\)\(+\)\(384\)\(35\)\(349\)\(352\)\(35\)\(317\)\(32\)\(0\)\(32\)
\(-\)\(-\)\(+\)\(+\)\(392\)\(52\)\(340\)\(360\)\(52\)\(308\)\(32\)\(0\)\(32\)
\(-\)\(-\)\(-\)\(-\)\(384\)\(64\)\(320\)\(352\)\(64\)\(288\)\(32\)\(0\)\(32\)
Plus space\(+\)\(1536\)\(186\)\(1350\)\(1409\)\(186\)\(1223\)\(127\)\(0\)\(127\)
Minus space\(-\)\(1568\)\(202\)\(1366\)\(1440\)\(202\)\(1238\)\(128\)\(0\)\(128\)

Trace form

\( 388 q + 388 q^{4} + 4 q^{5} + 4 q^{7} + 4 q^{10} - 2 q^{11} - 6 q^{13} - 4 q^{14} + 388 q^{16} - 4 q^{17} + 8 q^{19} + 4 q^{20} + 6 q^{22} + 388 q^{25} + 10 q^{26} + 4 q^{28} - 14 q^{29} + 4 q^{34} - 24 q^{35}+ \cdots + 32 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(17298))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 31
17298.2.a.a 17298.a 1.a $1$ $138.125$ \(\Q\) None \(-1\) \(0\) \(-1\) \(-3\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{5}-3q^{7}-q^{8}+q^{10}+\cdots\)
17298.2.a.b 17298.a 1.a $1$ $138.125$ \(\Q\) None \(-1\) \(0\) \(-1\) \(-3\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{5}-3q^{7}-q^{8}+q^{10}+\cdots\)
17298.2.a.c 17298.a 1.a $1$ $138.125$ \(\Q\) None \(-1\) \(0\) \(-1\) \(-2\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{5}-2q^{7}-q^{8}+q^{10}+\cdots\)
17298.2.a.d 17298.a 1.a $1$ $138.125$ \(\Q\) None \(-1\) \(0\) \(-1\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{5}-q^{8}+q^{10}+3q^{11}+\cdots\)
17298.2.a.e 17298.a 1.a $1$ $138.125$ \(\Q\) None \(-1\) \(0\) \(1\) \(2\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{5}+2q^{7}-q^{8}-q^{10}+\cdots\)
17298.2.a.f 17298.a 1.a $1$ $138.125$ \(\Q\) None \(-1\) \(0\) \(1\) \(2\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{5}+2q^{7}-q^{8}-q^{10}+\cdots\)
17298.2.a.g 17298.a 1.a $1$ $138.125$ \(\Q\) None \(-1\) \(0\) \(2\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+2q^{5}-q^{8}-2q^{10}-2q^{13}+\cdots\)
17298.2.a.h 17298.a 1.a $1$ $138.125$ \(\Q\) None \(-1\) \(0\) \(2\) \(1\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+2q^{5}+q^{7}-q^{8}-2q^{10}+\cdots\)
17298.2.a.i 17298.a 1.a $1$ $138.125$ \(\Q\) None \(-1\) \(0\) \(2\) \(1\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+2q^{5}+q^{7}-q^{8}-2q^{10}+\cdots\)
17298.2.a.j 17298.a 1.a $1$ $138.125$ \(\Q\) None \(-1\) \(0\) \(3\) \(-4\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+3q^{5}-4q^{7}-q^{8}-3q^{10}+\cdots\)
17298.2.a.k 17298.a 1.a $1$ $138.125$ \(\Q\) None \(1\) \(0\) \(-3\) \(-4\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-3q^{5}-4q^{7}+q^{8}-3q^{10}+\cdots\)
17298.2.a.l 17298.a 1.a $1$ $138.125$ \(\Q\) None \(1\) \(0\) \(-3\) \(-2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-3q^{5}-2q^{7}+q^{8}-3q^{10}+\cdots\)
17298.2.a.m 17298.a 1.a $1$ $138.125$ \(\Q\) None \(1\) \(0\) \(-2\) \(-1\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-2q^{5}-q^{7}+q^{8}-2q^{10}+\cdots\)
17298.2.a.n 17298.a 1.a $1$ $138.125$ \(\Q\) None \(1\) \(0\) \(-2\) \(-1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-2q^{5}-q^{7}+q^{8}-2q^{10}+\cdots\)
17298.2.a.o 17298.a 1.a $1$ $138.125$ \(\Q\) None \(1\) \(0\) \(-1\) \(-4\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{5}-4q^{7}+q^{8}-q^{10}+\cdots\)
17298.2.a.p 17298.a 1.a $1$ $138.125$ \(\Q\) None \(1\) \(0\) \(-1\) \(-4\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{5}-4q^{7}+q^{8}-q^{10}+\cdots\)
17298.2.a.q 17298.a 1.a $1$ $138.125$ \(\Q\) None \(1\) \(0\) \(-1\) \(2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{5}+2q^{7}+q^{8}-q^{10}+\cdots\)
17298.2.a.r 17298.a 1.a $1$ $138.125$ \(\Q\) None \(1\) \(0\) \(-1\) \(2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{5}+2q^{7}+q^{8}-q^{10}+\cdots\)
17298.2.a.s 17298.a 1.a $1$ $138.125$ \(\Q\) None \(1\) \(0\) \(1\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{5}+q^{8}+q^{10}-3q^{11}+\cdots\)
17298.2.a.t 17298.a 1.a $1$ $138.125$ \(\Q\) None \(1\) \(0\) \(1\) \(2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{5}+2q^{7}+q^{8}+q^{10}+\cdots\)
17298.2.a.u 17298.a 1.a $1$ $138.125$ \(\Q\) None \(1\) \(0\) \(3\) \(-1\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+3q^{5}-q^{7}+q^{8}+3q^{10}+\cdots\)
17298.2.a.v 17298.a 1.a $1$ $138.125$ \(\Q\) None \(1\) \(0\) \(3\) \(-1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+3q^{5}-q^{7}+q^{8}+3q^{10}+\cdots\)
17298.2.a.w 17298.a 1.a $2$ $138.125$ \(\Q(\sqrt{5}) \) None \(-2\) \(0\) \(-4\) \(-3\) $+$ $+$ $-$ $\mathrm{SU}(2)$
17298.2.a.x 17298.a 1.a $2$ $138.125$ \(\Q(\sqrt{5}) \) None \(-2\) \(0\) \(-4\) \(-3\) $+$ $+$ $+$ $\mathrm{SU}(2)$
17298.2.a.y 17298.a 1.a $2$ $138.125$ \(\Q(\sqrt{17}) \) None \(-2\) \(0\) \(-3\) \(2\) $+$ $-$ $-$ $\mathrm{SU}(2)$
17298.2.a.z 17298.a 1.a $2$ $138.125$ \(\Q(\sqrt{41}) \) None \(-2\) \(0\) \(-1\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$
17298.2.a.ba 17298.a 1.a $2$ $138.125$ \(\Q(\sqrt{41}) \) None \(-2\) \(0\) \(-1\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$
17298.2.a.bb 17298.a 1.a $2$ $138.125$ \(\Q(\sqrt{2}) \) None \(-2\) \(0\) \(0\) \(2\) $+$ $-$ $+$ $\mathrm{SU}(2)$
17298.2.a.bc 17298.a 1.a $2$ $138.125$ \(\Q(\sqrt{2}) \) None \(-2\) \(0\) \(0\) \(2\) $+$ $-$ $-$ $\mathrm{SU}(2)$
17298.2.a.bd 17298.a 1.a $2$ $138.125$ \(\Q(\sqrt{2}) \) None \(-2\) \(0\) \(2\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$
17298.2.a.be 17298.a 1.a $2$ $138.125$ \(\Q(\sqrt{2}) \) None \(-2\) \(0\) \(2\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$
17298.2.a.bf 17298.a 1.a $2$ $138.125$ \(\Q(\sqrt{5}) \) None \(-2\) \(0\) \(3\) \(5\) $+$ $+$ $+$ $\mathrm{SU}(2)$
17298.2.a.bg 17298.a 1.a $2$ $138.125$ \(\Q(\sqrt{5}) \) None \(-2\) \(0\) \(3\) \(5\) $+$ $+$ $-$ $\mathrm{SU}(2)$
17298.2.a.bh 17298.a 1.a $2$ $138.125$ \(\Q(\sqrt{5}) \) None \(2\) \(0\) \(-3\) \(5\) $-$ $+$ $-$ $\mathrm{SU}(2)$
17298.2.a.bi 17298.a 1.a $2$ $138.125$ \(\Q(\sqrt{5}) \) None \(2\) \(0\) \(-3\) \(5\) $-$ $+$ $+$ $\mathrm{SU}(2)$
17298.2.a.bj 17298.a 1.a $2$ $138.125$ \(\Q(\sqrt{2}) \) None \(2\) \(0\) \(-2\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$
17298.2.a.bk 17298.a 1.a $2$ $138.125$ \(\Q(\sqrt{2}) \) None \(2\) \(0\) \(-2\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$
17298.2.a.bl 17298.a 1.a $2$ $138.125$ \(\Q(\sqrt{5}) \) None \(2\) \(0\) \(-1\) \(1\) $-$ $-$ $+$ $\mathrm{SU}(2)$
17298.2.a.bm 17298.a 1.a $2$ $138.125$ \(\Q(\sqrt{5}) \) None \(2\) \(0\) \(-1\) \(1\) $-$ $-$ $-$ $\mathrm{SU}(2)$
17298.2.a.bn 17298.a 1.a $2$ $138.125$ \(\Q(\sqrt{19}) \) None \(2\) \(0\) \(0\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$
17298.2.a.bo 17298.a 1.a $2$ $138.125$ \(\Q(\sqrt{19}) \) None \(2\) \(0\) \(0\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
17298.2.a.bp 17298.a 1.a $2$ $138.125$ \(\Q(\sqrt{3}) \) None \(2\) \(0\) \(0\) \(4\) $-$ $-$ $-$ $\mathrm{SU}(2)$
17298.2.a.bq 17298.a 1.a $2$ $138.125$ \(\Q(\sqrt{5}) \) None \(2\) \(0\) \(2\) \(-1\) $-$ $-$ $+$ $\mathrm{SU}(2)$
17298.2.a.br 17298.a 1.a $2$ $138.125$ \(\Q(\sqrt{5}) \) None \(2\) \(0\) \(2\) \(-1\) $-$ $-$ $-$ $\mathrm{SU}(2)$
17298.2.a.bs 17298.a 1.a $2$ $138.125$ \(\Q(\sqrt{5}) \) None \(2\) \(0\) \(4\) \(-3\) $-$ $+$ $+$ $\mathrm{SU}(2)$
17298.2.a.bt 17298.a 1.a $2$ $138.125$ \(\Q(\sqrt{5}) \) None \(2\) \(0\) \(4\) \(-3\) $-$ $+$ $-$ $\mathrm{SU}(2)$
17298.2.a.bu 17298.a 1.a $2$ $138.125$ \(\Q(\sqrt{10}) \) not computed \(2\) \(0\) \(4\) \(4\) $-$ $-$ $-$
17298.2.a.bv 17298.a 1.a $2$ $138.125$ \(\Q(\sqrt{2}) \) None \(2\) \(0\) \(6\) \(4\) $-$ $-$ $-$ $\mathrm{SU}(2)$
17298.2.a.bw 17298.a 1.a $2$ $138.125$ \(\Q(\sqrt{2}) \) None \(2\) \(0\) \(6\) \(4\) $-$ $-$ $-$ $\mathrm{SU}(2)$
17298.2.a.bx 17298.a 1.a $3$ $138.125$ 3.3.2292.1 None \(-3\) \(0\) \(2\) \(1\) $+$ $+$ $+$ $\mathrm{SU}(2)$
17298.2.a.by 17298.a 1.a $3$ $138.125$ 3.3.2292.1 None \(-3\) \(0\) \(2\) \(1\) $+$ $+$ $-$ $\mathrm{SU}(2)$
17298.2.a.bz 17298.a 1.a $3$ $138.125$ 3.3.2292.1 None \(3\) \(0\) \(-2\) \(1\) $-$ $+$ $-$ $\mathrm{SU}(2)$
17298.2.a.ca 17298.a 1.a $3$ $138.125$ 3.3.2292.1 None \(3\) \(0\) \(-2\) \(1\) $-$ $+$ $+$ $\mathrm{SU}(2)$
17298.2.a.cb 17298.a 1.a $4$ $138.125$ \(\Q(\zeta_{16})^+\) None \(-4\) \(0\) \(-4\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$
17298.2.a.cc 17298.a 1.a $4$ $138.125$ \(\Q(\zeta_{16})^+\) None \(-4\) \(0\) \(-4\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$
17298.2.a.cd 17298.a 1.a $4$ $138.125$ 4.4.19225.1 None \(-4\) \(0\) \(-1\) \(4\) $+$ $-$ $-$ $\mathrm{SU}(2)$
17298.2.a.ce 17298.a 1.a $4$ $138.125$ 4.4.19225.1 None \(-4\) \(0\) \(-1\) \(4\) $+$ $-$ $+$ $\mathrm{SU}(2)$
17298.2.a.cf 17298.a 1.a $4$ $138.125$ \(\Q(\zeta_{15})^+\) None \(-4\) \(0\) \(1\) \(3\) $+$ $-$ $+$ $\mathrm{SU}(2)$
17298.2.a.cg 17298.a 1.a $4$ $138.125$ \(\Q(\zeta_{15})^+\) None \(-4\) \(0\) \(1\) \(3\) $+$ $-$ $-$ $\mathrm{SU}(2)$
17298.2.a.ch 17298.a 1.a $4$ $138.125$ 4.4.4525.1 None \(-4\) \(0\) \(2\) \(-4\) $+$ $-$ $+$ $\mathrm{SU}(2)$
17298.2.a.ci 17298.a 1.a $4$ $138.125$ 4.4.22592.1 None \(-4\) \(0\) \(2\) \(-4\) $+$ $-$ $-$ $\mathrm{SU}(2)$
17298.2.a.cj 17298.a 1.a $4$ $138.125$ 4.4.22592.1 None \(-4\) \(0\) \(2\) \(-4\) $+$ $-$ $-$ $\mathrm{SU}(2)$
17298.2.a.ck 17298.a 1.a $4$ $138.125$ 4.4.4525.1 None \(-4\) \(0\) \(2\) \(-4\) $+$ $-$ $-$ $\mathrm{SU}(2)$
17298.2.a.cl 17298.a 1.a $4$ $138.125$ \(\Q(\zeta_{15})^+\) None \(-4\) \(0\) \(3\) \(-11\) $+$ $-$ $-$ $\mathrm{SU}(2)$
17298.2.a.cm 17298.a 1.a $4$ $138.125$ \(\Q(\zeta_{15})^+\) None \(-4\) \(0\) \(3\) \(-11\) $+$ $-$ $+$ $\mathrm{SU}(2)$
17298.2.a.cn 17298.a 1.a $4$ $138.125$ \(\Q(\zeta_{16})^+\) not computed \(-4\) \(0\) \(8\) \(-8\) $+$ $-$ $-$
17298.2.a.co 17298.a 1.a $4$ $138.125$ \(\Q(\zeta_{15})^+\) None \(4\) \(0\) \(-5\) \(-7\) $-$ $-$ $-$ $\mathrm{SU}(2)$
17298.2.a.cp 17298.a 1.a $4$ $138.125$ \(\Q(\zeta_{15})^+\) None \(4\) \(0\) \(-5\) \(-7\) $-$ $-$ $+$ $\mathrm{SU}(2)$
17298.2.a.cq 17298.a 1.a $4$ $138.125$ \(\Q(\sqrt{2}, \sqrt{5})\) not computed \(4\) \(0\) \(-4\) \(0\) $-$ $-$ $-$
17298.2.a.cr 17298.a 1.a $4$ $138.125$ \(\Q(\zeta_{15})^+\) None \(4\) \(0\) \(-3\) \(1\) $-$ $-$ $+$ $\mathrm{SU}(2)$
17298.2.a.cs 17298.a 1.a $4$ $138.125$ \(\Q(\zeta_{15})^+\) None \(4\) \(0\) \(-3\) \(1\) $-$ $-$ $-$ $\mathrm{SU}(2)$
17298.2.a.ct 17298.a 1.a $4$ $138.125$ 4.4.8725.1 None \(4\) \(0\) \(0\) \(-2\) $-$ $-$ $-$ $\mathrm{SU}(2)$
17298.2.a.cu 17298.a 1.a $4$ $138.125$ 4.4.8725.1 None \(4\) \(0\) \(0\) \(-2\) $-$ $-$ $+$ $\mathrm{SU}(2)$
17298.2.a.cv 17298.a 1.a $4$ $138.125$ \(\Q(\zeta_{15})^+\) None \(4\) \(0\) \(0\) \(7\) $-$ $-$ $+$ $\mathrm{SU}(2)$
17298.2.a.cw 17298.a 1.a $4$ $138.125$ \(\Q(\zeta_{15})^+\) None \(4\) \(0\) \(0\) \(7\) $-$ $-$ $-$ $\mathrm{SU}(2)$
17298.2.a.cx 17298.a 1.a $4$ $138.125$ \(\Q(\zeta_{16})^+\) not computed \(4\) \(0\) \(0\) \(8\) $-$ $-$ $-$
17298.2.a.cy 17298.a 1.a $4$ $138.125$ \(\Q(\zeta_{15})^+\) None \(4\) \(0\) \(7\) \(1\) $-$ $-$ $-$ $\mathrm{SU}(2)$
17298.2.a.cz 17298.a 1.a $4$ $138.125$ \(\Q(\zeta_{15})^+\) None \(4\) \(0\) \(7\) \(1\) $-$ $-$ $+$ $\mathrm{SU}(2)$
17298.2.a.da 17298.a 1.a $8$ $138.125$ 8.8.\(\cdots\).1 None \(-8\) \(0\) \(-5\) \(8\) $+$ $-$ $-$ $\mathrm{SU}(2)$
17298.2.a.db 17298.a 1.a $8$ $138.125$ 8.8.\(\cdots\).1 None \(-8\) \(0\) \(-5\) \(8\) $+$ $-$ $+$ $\mathrm{SU}(2)$
17298.2.a.dc 17298.a 1.a $8$ $138.125$ \(\Q(\zeta_{32})^+\) None \(-8\) \(0\) \(8\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$
17298.2.a.dd 17298.a 1.a $8$ $138.125$ 8.8.4848615424.1 not computed \(-8\) \(0\) \(8\) \(0\) $+$ $+$ $-$
17298.2.a.de 17298.a 1.a $8$ $138.125$ \(\Q(\zeta_{32})^+\) None \(-8\) \(0\) \(8\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$
17298.2.a.df 17298.a 1.a $8$ $138.125$ \(\Q(\zeta_{32})^+\) None \(8\) \(0\) \(-8\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
17298.2.a.dg 17298.a 1.a $8$ $138.125$ 8.8.4848615424.1 not computed \(8\) \(0\) \(-8\) \(0\) $-$ $+$ $-$
17298.2.a.dh 17298.a 1.a $8$ $138.125$ \(\Q(\zeta_{32})^+\) None \(8\) \(0\) \(-8\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
17298.2.a.di 17298.a 1.a $8$ $138.125$ \(\Q(\zeta_{32})^+\) not computed \(8\) \(0\) \(0\) \(-16\) $-$ $-$ $+$
17298.2.a.dj 17298.a 1.a $8$ $138.125$ 8.8.\(\cdots\).1 None \(8\) \(0\) \(4\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$
17298.2.a.dk 17298.a 1.a $8$ $138.125$ 8.8.\(\cdots\).1 None \(8\) \(0\) \(4\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$
17298.2.a.dl 17298.a 1.a $12$ $138.125$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None \(-12\) \(0\) \(-2\) \(-1\) $+$ $+$ $+$ $\mathrm{SU}(2)$
17298.2.a.dm 17298.a 1.a $12$ $138.125$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None \(-12\) \(0\) \(-2\) \(-1\) $+$ $+$ $-$ $\mathrm{SU}(2)$
17298.2.a.dn 17298.a 1.a $12$ $138.125$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None \(12\) \(0\) \(2\) \(-1\) $-$ $+$ $-$ $\mathrm{SU}(2)$
17298.2.a.do 17298.a 1.a $12$ $138.125$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None \(12\) \(0\) \(2\) \(-1\) $-$ $+$ $+$ $\mathrm{SU}(2)$
17298.2.a.dp 17298.a 1.a $16$ $138.125$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) not computed \(-16\) \(0\) \(-16\) \(16\) $+$ $-$ $+$
17298.2.a.dq 17298.a 1.a $24$ $138.125$ not computed \(-24\) \(0\) \(-16\) \(0\) $+$ $+$ $+$
17298.2.a.dr 17298.a 1.a $24$ $138.125$ not computed \(24\) \(0\) \(16\) \(0\) $-$ $+$ $+$

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(17298))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(17298)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(31))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(62))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(93))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(186))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(279))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(558))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(961))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1922))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2883))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(5766))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(8649))\)\(^{\oplus 2}\)