Properties

Label 1728.3.t
Level $1728$
Weight $3$
Character orbit 1728.t
Rep. character $\chi_{1728}(415,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $96$
Newform subspaces $3$
Sturm bound $864$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1728.t (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 72 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 3 \)
Sturm bound: \(864\)
Trace bound: \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(1728, [\chi])\).

Total New Old
Modular forms 1224 96 1128
Cusp forms 1080 96 984
Eisenstein series 144 0 144

Trace form

\( 96 q + 240 q^{25} - 144 q^{41} + 336 q^{49} - 576 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(1728, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1728.3.t.a 1728.t 72.p $32$ $47.085$ None 576.3.t.a \(0\) \(0\) \(-18\) \(0\) $\mathrm{SU}(2)[C_{6}]$
1728.3.t.b 1728.t 72.p $32$ $47.085$ None 576.3.t.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$
1728.3.t.c 1728.t 72.p $32$ $47.085$ None 576.3.t.a \(0\) \(0\) \(18\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{3}^{\mathrm{old}}(1728, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(1728, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(216, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(576, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(864, [\chi])\)\(^{\oplus 2}\)