Defining parameters
| Level: | \( N \) | \(=\) | \( 1728 = 2^{6} \cdot 3^{3} \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1728.t (of order \(6\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 72 \) |
| Character field: | \(\Q(\zeta_{6})\) | ||
| Newform subspaces: | \( 3 \) | ||
| Sturm bound: | \(864\) | ||
| Trace bound: | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(1728, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 1224 | 96 | 1128 |
| Cusp forms | 1080 | 96 | 984 |
| Eisenstein series | 144 | 0 | 144 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(1728, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 1728.3.t.a | $32$ | $47.085$ | None | \(0\) | \(0\) | \(-18\) | \(0\) | ||
| 1728.3.t.b | $32$ | $47.085$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
| 1728.3.t.c | $32$ | $47.085$ | None | \(0\) | \(0\) | \(18\) | \(0\) | ||
Decomposition of \(S_{3}^{\mathrm{old}}(1728, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(1728, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(216, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(576, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(864, [\chi])\)\(^{\oplus 2}\)