Properties

Label 1728.3.q.e.1601.1
Level $1728$
Weight $3$
Character 1728.1601
Analytic conductor $47.085$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1728.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(47.0845896815\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Defining polynomial: \(x^{4} - 2 x^{2} + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 72)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1601.1
Root \(1.22474 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1728.1601
Dual form 1728.3.q.e.449.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-3.39898 + 1.96240i) q^{5} +(-6.39898 + 11.0834i) q^{7} +O(q^{10})\) \(q+(-3.39898 + 1.96240i) q^{5} +(-6.39898 + 11.0834i) q^{7} +(-14.2980 - 8.25493i) q^{11} +(-1.39898 - 2.42310i) q^{13} -2.54270i q^{17} -21.5959 q^{19} +(-2.60102 + 1.50170i) q^{23} +(-4.79796 + 8.31031i) q^{25} +(-13.1969 - 7.61926i) q^{29} +(13.6010 + 23.5577i) q^{31} -50.2295i q^{35} +10.4041 q^{37} +(34.5000 - 19.9186i) q^{41} +(17.0959 - 29.6110i) q^{43} +(-58.1969 - 33.6000i) q^{47} +(-57.3939 - 99.4091i) q^{49} +100.680i q^{53} +64.7980 q^{55} +(5.29796 - 3.05878i) q^{59} +(20.3990 - 35.3321i) q^{61} +(9.51021 + 5.49072i) q^{65} +(54.4898 + 94.3791i) q^{67} +52.8829i q^{71} +68.7878 q^{73} +(182.985 - 105.646i) q^{77} +(12.7929 - 22.1579i) q^{79} +(52.0857 + 30.0717i) q^{83} +(4.98979 + 8.64258i) q^{85} -7.62809i q^{89} +35.8082 q^{91} +(73.4041 - 42.3799i) q^{95} +(50.7020 - 87.8185i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 6q^{5} - 6q^{7} + O(q^{10}) \) \( 4q + 6q^{5} - 6q^{7} - 18q^{11} + 14q^{13} - 8q^{19} - 30q^{23} + 20q^{25} + 6q^{29} + 74q^{31} + 120q^{37} + 138q^{41} - 10q^{43} - 174q^{47} - 112q^{49} + 220q^{55} - 18q^{59} + 62q^{61} + 234q^{65} + 22q^{67} + 40q^{73} + 438q^{77} - 86q^{79} - 66q^{83} - 176q^{85} + 300q^{91} + 372q^{95} + 242q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1728\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(703\) \(1217\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −3.39898 + 1.96240i −0.679796 + 0.392480i −0.799778 0.600296i \(-0.795050\pi\)
0.119982 + 0.992776i \(0.461716\pi\)
\(6\) 0 0
\(7\) −6.39898 + 11.0834i −0.914140 + 1.58334i −0.105984 + 0.994368i \(0.533799\pi\)
−0.808156 + 0.588969i \(0.799534\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −14.2980 8.25493i −1.29981 0.750448i −0.319443 0.947606i \(-0.603496\pi\)
−0.980372 + 0.197157i \(0.936829\pi\)
\(12\) 0 0
\(13\) −1.39898 2.42310i −0.107614 0.186393i 0.807189 0.590293i \(-0.200988\pi\)
−0.914803 + 0.403900i \(0.867654\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.54270i 0.149570i −0.997200 0.0747852i \(-0.976173\pi\)
0.997200 0.0747852i \(-0.0238271\pi\)
\(18\) 0 0
\(19\) −21.5959 −1.13663 −0.568314 0.822812i \(-0.692404\pi\)
−0.568314 + 0.822812i \(0.692404\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.60102 + 1.50170i −0.113088 + 0.0652913i −0.555477 0.831532i \(-0.687464\pi\)
0.442389 + 0.896823i \(0.354131\pi\)
\(24\) 0 0
\(25\) −4.79796 + 8.31031i −0.191918 + 0.332412i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −13.1969 7.61926i −0.455067 0.262733i 0.254901 0.966967i \(-0.417957\pi\)
−0.709968 + 0.704234i \(0.751290\pi\)
\(30\) 0 0
\(31\) 13.6010 + 23.5577i 0.438743 + 0.759924i 0.997593 0.0693442i \(-0.0220907\pi\)
−0.558850 + 0.829269i \(0.688757\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 50.2295i 1.43513i
\(36\) 0 0
\(37\) 10.4041 0.281191 0.140596 0.990067i \(-0.455098\pi\)
0.140596 + 0.990067i \(0.455098\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 34.5000 19.9186i 0.841463 0.485819i −0.0162980 0.999867i \(-0.505188\pi\)
0.857761 + 0.514048i \(0.171855\pi\)
\(42\) 0 0
\(43\) 17.0959 29.6110i 0.397579 0.688628i −0.595847 0.803098i \(-0.703184\pi\)
0.993427 + 0.114470i \(0.0365170\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −58.1969 33.6000i −1.23823 0.714894i −0.269500 0.963000i \(-0.586858\pi\)
−0.968733 + 0.248106i \(0.920192\pi\)
\(48\) 0 0
\(49\) −57.3939 99.4091i −1.17130 2.02876i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 100.680i 1.89963i 0.312810 + 0.949816i \(0.398730\pi\)
−0.312810 + 0.949816i \(0.601270\pi\)
\(54\) 0 0
\(55\) 64.7980 1.17814
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.29796 3.05878i 0.0897959 0.0518437i −0.454430 0.890783i \(-0.650157\pi\)
0.544226 + 0.838939i \(0.316824\pi\)
\(60\) 0 0
\(61\) 20.3990 35.3321i 0.334409 0.579214i −0.648962 0.760821i \(-0.724796\pi\)
0.983371 + 0.181607i \(0.0581298\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 9.51021 + 5.49072i 0.146311 + 0.0844726i
\(66\) 0 0
\(67\) 54.4898 + 94.3791i 0.813281 + 1.40864i 0.910556 + 0.413386i \(0.135654\pi\)
−0.0972755 + 0.995257i \(0.531013\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 52.8829i 0.744830i 0.928066 + 0.372415i \(0.121470\pi\)
−0.928066 + 0.372415i \(0.878530\pi\)
\(72\) 0 0
\(73\) 68.7878 0.942298 0.471149 0.882054i \(-0.343839\pi\)
0.471149 + 0.882054i \(0.343839\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 182.985 105.646i 2.37642 1.37203i
\(78\) 0 0
\(79\) 12.7929 22.1579i 0.161935 0.280479i −0.773628 0.633640i \(-0.781560\pi\)
0.935563 + 0.353161i \(0.114893\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 52.0857 + 30.0717i 0.627539 + 0.362310i 0.779798 0.626031i \(-0.215322\pi\)
−0.152260 + 0.988341i \(0.548655\pi\)
\(84\) 0 0
\(85\) 4.98979 + 8.64258i 0.0587035 + 0.101677i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 7.62809i 0.0857089i −0.999081 0.0428545i \(-0.986355\pi\)
0.999081 0.0428545i \(-0.0136452\pi\)
\(90\) 0 0
\(91\) 35.8082 0.393496
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 73.4041 42.3799i 0.772675 0.446104i
\(96\) 0 0
\(97\) 50.7020 87.8185i 0.522701 0.905345i −0.476950 0.878931i \(-0.658258\pi\)
0.999651 0.0264148i \(-0.00840908\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.19694 0.691053i −0.0118509 0.00684211i 0.494063 0.869426i \(-0.335511\pi\)
−0.505914 + 0.862584i \(0.668845\pi\)
\(102\) 0 0
\(103\) 0.792856 + 1.37327i 0.00769763 + 0.0133327i 0.869849 0.493319i \(-0.164216\pi\)
−0.862151 + 0.506652i \(0.830883\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 103.223i 0.964702i 0.875978 + 0.482351i \(0.160217\pi\)
−0.875978 + 0.482351i \(0.839783\pi\)
\(108\) 0 0
\(109\) −14.4041 −0.132148 −0.0660738 0.997815i \(-0.521047\pi\)
−0.0660738 + 0.997815i \(0.521047\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 92.0755 53.1598i 0.814828 0.470441i −0.0338020 0.999429i \(-0.510762\pi\)
0.848630 + 0.528988i \(0.177428\pi\)
\(114\) 0 0
\(115\) 5.89388 10.2085i 0.0512511 0.0887695i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 28.1816 + 16.2707i 0.236820 + 0.136728i
\(120\) 0 0
\(121\) 75.7878 + 131.268i 0.626345 + 1.08486i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 135.782i 1.08626i
\(126\) 0 0
\(127\) −183.980 −1.44866 −0.724329 0.689454i \(-0.757850\pi\)
−0.724329 + 0.689454i \(0.757850\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −91.6918 + 52.9383i −0.699938 + 0.404109i −0.807324 0.590108i \(-0.799085\pi\)
0.107387 + 0.994217i \(0.465752\pi\)
\(132\) 0 0
\(133\) 138.192 239.355i 1.03904 1.79966i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 165.288 + 95.4289i 1.20648 + 0.696562i 0.961989 0.273090i \(-0.0880457\pi\)
0.244491 + 0.969651i \(0.421379\pi\)
\(138\) 0 0
\(139\) −47.4898 82.2547i −0.341653 0.591761i 0.643087 0.765793i \(-0.277653\pi\)
−0.984740 + 0.174033i \(0.944320\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 46.1939i 0.323034i
\(144\) 0 0
\(145\) 59.8082 0.412470
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 79.6112 45.9636i 0.534304 0.308480i −0.208464 0.978030i \(-0.566846\pi\)
0.742767 + 0.669550i \(0.233513\pi\)
\(150\) 0 0
\(151\) 8.20714 14.2152i 0.0543519 0.0941403i −0.837569 0.546331i \(-0.816024\pi\)
0.891921 + 0.452191i \(0.149357\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −92.4592 53.3813i −0.596511 0.344396i
\(156\) 0 0
\(157\) −105.985 183.571i −0.675062 1.16924i −0.976451 0.215740i \(-0.930784\pi\)
0.301389 0.953501i \(-0.402550\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 38.4374i 0.238742i
\(162\) 0 0
\(163\) −172.788 −1.06005 −0.530024 0.847983i \(-0.677817\pi\)
−0.530024 + 0.847983i \(0.677817\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 163.197 94.2218i 0.977227 0.564202i 0.0757953 0.997123i \(-0.475850\pi\)
0.901432 + 0.432921i \(0.142517\pi\)
\(168\) 0 0
\(169\) 80.5857 139.579i 0.476839 0.825909i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 52.1969 + 30.1359i 0.301716 + 0.174196i 0.643214 0.765687i \(-0.277601\pi\)
−0.341497 + 0.939883i \(0.610934\pi\)
\(174\) 0 0
\(175\) −61.4041 106.355i −0.350880 0.607743i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 72.7108i 0.406205i −0.979157 0.203103i \(-0.934897\pi\)
0.979157 0.203103i \(-0.0651025\pi\)
\(180\) 0 0
\(181\) 97.5959 0.539204 0.269602 0.962972i \(-0.413108\pi\)
0.269602 + 0.962972i \(0.413108\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −35.3633 + 20.4170i −0.191153 + 0.110362i
\(186\) 0 0
\(187\) −20.9898 + 36.3554i −0.112245 + 0.194414i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −282.560 163.136i −1.47937 0.854116i −0.479645 0.877462i \(-0.659235\pi\)
−0.999727 + 0.0233462i \(0.992568\pi\)
\(192\) 0 0
\(193\) −10.5102 18.2042i −0.0544570 0.0943223i 0.837512 0.546419i \(-0.184009\pi\)
−0.891969 + 0.452097i \(0.850676\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 32.5413i 0.165184i −0.996583 0.0825922i \(-0.973680\pi\)
0.996583 0.0825922i \(-0.0263199\pi\)
\(198\) 0 0
\(199\) −62.0000 −0.311558 −0.155779 0.987792i \(-0.549789\pi\)
−0.155779 + 0.987792i \(0.549789\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 168.894 97.5109i 0.831990 0.480349i
\(204\) 0 0
\(205\) −78.1765 + 135.406i −0.381349 + 0.660516i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 308.778 + 178.273i 1.47740 + 0.852980i
\(210\) 0 0
\(211\) −84.2980 146.008i −0.399516 0.691983i 0.594150 0.804354i \(-0.297489\pi\)
−0.993666 + 0.112372i \(0.964155\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 134.196i 0.624169i
\(216\) 0 0
\(217\) −348.131 −1.60429
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −6.16122 + 3.55718i −0.0278788 + 0.0160958i
\(222\) 0 0
\(223\) 78.1867 135.423i 0.350613 0.607280i −0.635744 0.771900i \(-0.719307\pi\)
0.986357 + 0.164620i \(0.0526399\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 86.6510 + 50.0280i 0.381723 + 0.220388i 0.678567 0.734538i \(-0.262601\pi\)
−0.296845 + 0.954926i \(0.595934\pi\)
\(228\) 0 0
\(229\) −104.995 181.856i −0.458493 0.794133i 0.540389 0.841416i \(-0.318277\pi\)
−0.998882 + 0.0472824i \(0.984944\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 307.127i 1.31814i −0.752081 0.659070i \(-0.770950\pi\)
0.752081 0.659070i \(-0.229050\pi\)
\(234\) 0 0
\(235\) 263.747 1.12233
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 70.3888 40.6390i 0.294514 0.170038i −0.345462 0.938433i \(-0.612278\pi\)
0.639976 + 0.768395i \(0.278944\pi\)
\(240\) 0 0
\(241\) 180.096 311.935i 0.747286 1.29434i −0.201833 0.979420i \(-0.564690\pi\)
0.949119 0.314917i \(-0.101977\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 390.161 + 225.260i 1.59249 + 0.919427i
\(246\) 0 0
\(247\) 30.2122 + 52.3291i 0.122317 + 0.211859i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 400.179i 1.59434i 0.603755 + 0.797170i \(0.293670\pi\)
−0.603755 + 0.797170i \(0.706330\pi\)
\(252\) 0 0
\(253\) 49.5857 0.195991
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −315.035 + 181.885i −1.22582 + 0.707725i −0.966152 0.257974i \(-0.916945\pi\)
−0.259664 + 0.965699i \(0.583612\pi\)
\(258\) 0 0
\(259\) −66.5755 + 115.312i −0.257048 + 0.445221i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 326.570 + 188.546i 1.24171 + 0.716903i 0.969443 0.245318i \(-0.0788923\pi\)
0.272270 + 0.962221i \(0.412226\pi\)
\(264\) 0 0
\(265\) −197.576 342.211i −0.745568 1.29136i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 170.849i 0.635125i 0.948237 + 0.317562i \(0.102864\pi\)
−0.948237 + 0.317562i \(0.897136\pi\)
\(270\) 0 0
\(271\) −50.4041 −0.185993 −0.0929965 0.995666i \(-0.529645\pi\)
−0.0929965 + 0.995666i \(0.529645\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 137.202 79.2136i 0.498917 0.288050i
\(276\) 0 0
\(277\) 12.8031 22.1756i 0.0462204 0.0800561i −0.841990 0.539494i \(-0.818616\pi\)
0.888210 + 0.459438i \(0.151949\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −290.267 167.586i −1.03298 0.596391i −0.115143 0.993349i \(-0.536733\pi\)
−0.917837 + 0.396958i \(0.870066\pi\)
\(282\) 0 0
\(283\) −7.48979 12.9727i −0.0264657 0.0458399i 0.852489 0.522745i \(-0.175092\pi\)
−0.878955 + 0.476905i \(0.841759\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 509.834i 1.77643i
\(288\) 0 0
\(289\) 282.535 0.977629
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −261.015 + 150.697i −0.890837 + 0.514325i −0.874216 0.485537i \(-0.838624\pi\)
−0.0166210 + 0.999862i \(0.505291\pi\)
\(294\) 0 0
\(295\) −12.0051 + 20.7934i −0.0406953 + 0.0704863i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 7.27755 + 4.20169i 0.0243396 + 0.0140525i
\(300\) 0 0
\(301\) 218.793 + 378.960i 0.726887 + 1.25900i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 160.124i 0.524997i
\(306\) 0 0
\(307\) 44.7469 0.145755 0.0728777 0.997341i \(-0.476782\pi\)
0.0728777 + 0.997341i \(0.476782\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −281.348 + 162.436i −0.904656 + 0.522303i −0.878708 0.477360i \(-0.841594\pi\)
−0.0259480 + 0.999663i \(0.508260\pi\)
\(312\) 0 0
\(313\) −156.894 + 271.748i −0.501258 + 0.868205i 0.498741 + 0.866751i \(0.333796\pi\)
−0.999999 + 0.00145368i \(0.999537\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −47.9847 27.7040i −0.151371 0.0873942i 0.422401 0.906409i \(-0.361187\pi\)
−0.573773 + 0.819015i \(0.694521\pi\)
\(318\) 0 0
\(319\) 125.793 + 217.880i 0.394335 + 0.683008i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 54.9119i 0.170006i
\(324\) 0 0
\(325\) 26.8490 0.0826123
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 744.802 430.012i 2.26384 1.30703i
\(330\) 0 0
\(331\) 7.70204 13.3403i 0.0232690 0.0403031i −0.854156 0.520016i \(-0.825926\pi\)
0.877425 + 0.479713i \(0.159259\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −370.419 213.862i −1.10573 0.638393i
\(336\) 0 0
\(337\) −37.8837 65.6164i −0.112414 0.194708i 0.804329 0.594184i \(-0.202525\pi\)
−0.916743 + 0.399477i \(0.869192\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 449.102i 1.31701i
\(342\) 0 0
\(343\) 841.949 2.45466
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 578.651 334.084i 1.66758 0.962779i 0.698646 0.715467i \(-0.253786\pi\)
0.968936 0.247312i \(-0.0795472\pi\)
\(348\) 0 0
\(349\) −123.015 + 213.069i −0.352479 + 0.610512i −0.986683 0.162654i \(-0.947995\pi\)
0.634204 + 0.773166i \(0.281328\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −156.510 90.3612i −0.443372 0.255981i 0.261655 0.965161i \(-0.415732\pi\)
−0.705027 + 0.709181i \(0.749065\pi\)
\(354\) 0 0
\(355\) −103.778 179.748i −0.292331 0.506332i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 256.273i 0.713852i −0.934133 0.356926i \(-0.883825\pi\)
0.934133 0.356926i \(-0.116175\pi\)
\(360\) 0 0
\(361\) 105.384 0.291922
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −233.808 + 134.989i −0.640570 + 0.369833i
\(366\) 0 0
\(367\) −270.358 + 468.274i −0.736671 + 1.27595i 0.217316 + 0.976101i \(0.430270\pi\)
−0.953986 + 0.299850i \(0.903063\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1115.88 644.252i −3.00776 1.73653i
\(372\) 0 0
\(373\) −85.9847 148.930i −0.230522 0.399276i 0.727440 0.686171i \(-0.240710\pi\)
−0.957962 + 0.286896i \(0.907377\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 42.6367i 0.113095i
\(378\) 0 0
\(379\) 170.849 0.450789 0.225394 0.974268i \(-0.427633\pi\)
0.225394 + 0.974268i \(0.427633\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 505.681 291.955i 1.32031 0.762284i 0.336536 0.941671i \(-0.390745\pi\)
0.983779 + 0.179386i \(0.0574112\pi\)
\(384\) 0 0
\(385\) −414.641 + 718.179i −1.07699 + 1.86540i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −384.752 222.137i −0.989080 0.571045i −0.0840807 0.996459i \(-0.526795\pi\)
−0.904999 + 0.425413i \(0.860129\pi\)
\(390\) 0 0
\(391\) 3.81837 + 6.61361i 0.00976565 + 0.0169146i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 100.419i 0.254225i
\(396\) 0 0
\(397\) 575.090 1.44859 0.724294 0.689491i \(-0.242166\pi\)
0.724294 + 0.689491i \(0.242166\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −141.318 + 81.5902i −0.352415 + 0.203467i −0.665748 0.746176i \(-0.731888\pi\)
0.313333 + 0.949643i \(0.398554\pi\)
\(402\) 0 0
\(403\) 38.0551 65.9134i 0.0944295 0.163557i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −148.757 85.8850i −0.365497 0.211020i
\(408\) 0 0
\(409\) 300.641 + 520.725i 0.735063 + 1.27317i 0.954696 + 0.297584i \(0.0961808\pi\)
−0.219633 + 0.975583i \(0.570486\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 78.2922i 0.189570i
\(414\) 0 0
\(415\) −236.051 −0.568798
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −158.620 + 91.5795i −0.378569 + 0.218567i −0.677195 0.735803i \(-0.736805\pi\)
0.298626 + 0.954370i \(0.403472\pi\)
\(420\) 0 0
\(421\) 83.7724 145.098i 0.198984 0.344651i −0.749215 0.662327i \(-0.769569\pi\)
0.948199 + 0.317676i \(0.102902\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 21.1306 + 12.1998i 0.0497191 + 0.0287053i
\(426\) 0 0
\(427\) 261.065 + 452.178i 0.611394 + 1.05897i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 644.766i 1.49598i −0.663712 0.747988i \(-0.731020\pi\)
0.663712 0.747988i \(-0.268980\pi\)
\(432\) 0 0
\(433\) 133.514 0.308347 0.154174 0.988044i \(-0.450729\pi\)
0.154174 + 0.988044i \(0.450729\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 56.1714 32.4306i 0.128539 0.0742119i
\(438\) 0 0
\(439\) 46.2276 80.0685i 0.105302 0.182388i −0.808560 0.588414i \(-0.799752\pi\)
0.913862 + 0.406026i \(0.133086\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −150.157 86.6933i −0.338955 0.195696i 0.320855 0.947128i \(-0.396030\pi\)
−0.659810 + 0.751433i \(0.729363\pi\)
\(444\) 0 0
\(445\) 14.9694 + 25.9277i 0.0336391 + 0.0582646i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 430.692i 0.959224i 0.877481 + 0.479612i \(0.159223\pi\)
−0.877481 + 0.479612i \(0.840777\pi\)
\(450\) 0 0
\(451\) −657.706 −1.45833
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −121.711 + 70.2700i −0.267497 + 0.154440i
\(456\) 0 0
\(457\) 262.843 455.257i 0.575148 0.996186i −0.420877 0.907118i \(-0.638278\pi\)
0.996025 0.0890687i \(-0.0283891\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1.54999 + 0.894890i 0.00336224 + 0.00194119i 0.501680 0.865053i \(-0.332715\pi\)
−0.498318 + 0.866994i \(0.666049\pi\)
\(462\) 0 0
\(463\) −263.166 455.817i −0.568394 0.984487i −0.996725 0.0808651i \(-0.974232\pi\)
0.428331 0.903622i \(-0.359102\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 409.322i 0.876494i −0.898855 0.438247i \(-0.855600\pi\)
0.898855 0.438247i \(-0.144400\pi\)
\(468\) 0 0
\(469\) −1394.72 −2.97381
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −488.873 + 282.251i −1.03356 + 0.596726i
\(474\) 0 0
\(475\) 103.616 179.469i 0.218140 0.377829i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −525.207 303.228i −1.09647 0.633045i −0.161175 0.986926i \(-0.551528\pi\)
−0.935290 + 0.353881i \(0.884862\pi\)
\(480\) 0 0
\(481\) −14.5551 25.2102i −0.0302601 0.0524120i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 397.991i 0.820600i
\(486\) 0 0
\(487\) −275.131 −0.564950 −0.282475 0.959275i \(-0.591155\pi\)
−0.282475 + 0.959275i \(0.591155\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −127.469 + 73.5945i −0.259612 + 0.149887i −0.624157 0.781299i \(-0.714558\pi\)
0.364546 + 0.931186i \(0.381224\pi\)
\(492\) 0 0
\(493\) −19.3735 + 33.5558i −0.0392971 + 0.0680646i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −586.120 338.397i −1.17932 0.680879i
\(498\) 0 0
\(499\) 226.308 + 391.977i 0.453523 + 0.785526i 0.998602 0.0528594i \(-0.0168335\pi\)
−0.545079 + 0.838385i \(0.683500\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 571.541i 1.13627i 0.822937 + 0.568133i \(0.192334\pi\)
−0.822937 + 0.568133i \(0.807666\pi\)
\(504\) 0 0
\(505\) 5.42449 0.0107416
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 394.136 227.554i 0.774333 0.447062i −0.0600849 0.998193i \(-0.519137\pi\)
0.834418 + 0.551132i \(0.185804\pi\)
\(510\) 0 0
\(511\) −440.171 + 762.399i −0.861392 + 1.49198i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −5.38981 3.11181i −0.0104656 0.00604234i
\(516\) 0 0
\(517\) 554.732 + 960.823i 1.07298 + 1.85846i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 846.127i 1.62404i 0.583627 + 0.812022i \(0.301633\pi\)
−0.583627 + 0.812022i \(0.698367\pi\)
\(522\) 0 0
\(523\) 487.616 0.932345 0.466172 0.884694i \(-0.345633\pi\)
0.466172 + 0.884694i \(0.345633\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 59.9000 34.5833i 0.113662 0.0656229i
\(528\) 0 0
\(529\) −259.990 + 450.316i −0.491474 + 0.851258i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −96.5296 55.7314i −0.181106 0.104562i
\(534\) 0 0
\(535\) −202.565 350.853i −0.378627 0.655801i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1895.13i 3.51601i
\(540\) 0 0
\(541\) −608.302 −1.12440 −0.562202 0.827000i \(-0.690045\pi\)
−0.562202 + 0.827000i \(0.690045\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 48.9592 28.2666i 0.0898334 0.0518653i
\(546\) 0 0
\(547\) −431.671 + 747.677i −0.789162 + 1.36687i 0.137319 + 0.990527i \(0.456151\pi\)
−0.926481 + 0.376341i \(0.877182\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 285.000 + 164.545i 0.517241 + 0.298629i
\(552\) 0 0
\(553\) 163.722 + 283.576i 0.296062 + 0.512795i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 331.526i 0.595200i −0.954691 0.297600i \(-0.903814\pi\)
0.954691 0.297600i \(-0.0961861\pi\)
\(558\) 0 0
\(559\) −95.6674 −0.171140
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 514.024 296.772i 0.913010 0.527126i 0.0316114 0.999500i \(-0.489936\pi\)
0.881398 + 0.472374i \(0.156603\pi\)
\(564\) 0 0
\(565\) −208.642 + 361.378i −0.369278 + 0.639608i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −889.155 513.354i −1.56266 0.902204i −0.996986 0.0775764i \(-0.975282\pi\)
−0.565676 0.824627i \(-0.691385\pi\)
\(570\) 0 0
\(571\) 191.843 + 332.282i 0.335977 + 0.581929i 0.983672 0.179971i \(-0.0576002\pi\)
−0.647695 + 0.761900i \(0.724267\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 28.8204i 0.0501224i
\(576\) 0 0
\(577\) −777.433 −1.34737 −0.673685 0.739019i \(-0.735290\pi\)
−0.673685 + 0.739019i \(0.735290\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −666.591 + 384.856i −1.14732 + 0.662403i
\(582\) 0 0
\(583\) 831.110 1439.53i 1.42557 2.46917i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 581.520 + 335.741i 0.990665 + 0.571961i 0.905473 0.424404i \(-0.139516\pi\)
0.0851921 + 0.996365i \(0.472850\pi\)
\(588\) 0 0
\(589\) −293.727 508.749i −0.498687 0.863751i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 536.457i 0.904650i −0.891853 0.452325i \(-0.850595\pi\)
0.891853 0.452325i \(-0.149405\pi\)
\(594\) 0 0
\(595\) −127.718 −0.214653
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 735.438 424.605i 1.22778 0.708857i 0.261212 0.965282i \(-0.415878\pi\)
0.966564 + 0.256425i \(0.0825446\pi\)
\(600\) 0 0
\(601\) −330.692 + 572.775i −0.550236 + 0.953037i 0.448021 + 0.894023i \(0.352129\pi\)
−0.998257 + 0.0590138i \(0.981204\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −515.202 297.452i −0.851574 0.491656i
\(606\) 0 0
\(607\) 10.9541 + 18.9730i 0.0180463 + 0.0312570i 0.874908 0.484290i \(-0.160922\pi\)
−0.856861 + 0.515547i \(0.827589\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 188.023i 0.307730i
\(612\) 0 0
\(613\) 1164.75 1.90008 0.950038 0.312133i \(-0.101044\pi\)
0.950038 + 0.312133i \(0.101044\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −558.227 + 322.292i −0.904743 + 0.522354i −0.878736 0.477308i \(-0.841613\pi\)
−0.0260071 + 0.999662i \(0.508279\pi\)
\(618\) 0 0
\(619\) 564.469 977.690i 0.911905 1.57947i 0.100535 0.994933i \(-0.467944\pi\)
0.811370 0.584533i \(-0.198722\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 84.5449 + 48.8120i 0.135706 + 0.0783499i
\(624\) 0 0
\(625\) 146.510 + 253.763i 0.234416 + 0.406021i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 26.4544i 0.0420579i
\(630\) 0 0
\(631\) 143.212 0.226961 0.113480 0.993540i \(-0.463800\pi\)
0.113480 + 0.993540i \(0.463800\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 625.343 361.042i 0.984792 0.568570i
\(636\) 0 0
\(637\) −160.586 + 278.143i −0.252097 + 0.436645i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 198.418 + 114.557i 0.309545 + 0.178716i 0.646723 0.762725i \(-0.276139\pi\)
−0.337178 + 0.941441i \(0.609472\pi\)
\(642\) 0 0
\(643\) −554.682 960.737i −0.862646 1.49415i −0.869365 0.494170i \(-0.835472\pi\)
0.00671893 0.999977i \(-0.497861\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1052.57i 1.62685i 0.581669 + 0.813426i \(0.302400\pi\)
−0.581669 + 0.813426i \(0.697600\pi\)
\(648\) 0 0
\(649\) −101.000 −0.155624
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −795.499 + 459.282i −1.21822 + 0.703341i −0.964537 0.263946i \(-0.914976\pi\)
−0.253685 + 0.967287i \(0.581643\pi\)
\(654\) 0 0
\(655\) 207.772 359.872i 0.317210 0.549424i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −207.288 119.678i −0.314549 0.181605i 0.334411 0.942427i \(-0.391463\pi\)
−0.648960 + 0.760822i \(0.724796\pi\)
\(660\) 0 0
\(661\) 177.793 + 307.946i 0.268976 + 0.465879i 0.968598 0.248634i \(-0.0799816\pi\)
−0.699622 + 0.714513i \(0.746648\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1084.75i 1.63121i
\(666\) 0 0
\(667\) 45.7673 0.0686167
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −583.328 + 336.784i −0.869341 + 0.501914i
\(672\) 0 0
\(673\) 291.429 504.769i 0.433029 0.750028i −0.564103 0.825704i \(-0.690778\pi\)
0.997132 + 0.0756758i \(0.0241114\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −154.450 89.1718i −0.228139 0.131716i 0.381574 0.924338i \(-0.375382\pi\)
−0.609713 + 0.792622i \(0.708715\pi\)
\(678\) 0 0
\(679\) 648.883 + 1123.90i 0.955645 + 1.65522i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 660.510i 0.967072i −0.875325 0.483536i \(-0.839352\pi\)
0.875325 0.483536i \(-0.160648\pi\)
\(684\) 0 0
\(685\) −749.080 −1.09355
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 243.959 140.850i 0.354077 0.204427i
\(690\) 0 0
\(691\) 43.2571 74.9236i 0.0626008 0.108428i −0.833026 0.553233i \(-0.813394\pi\)
0.895627 + 0.444805i \(0.146727\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 322.834 + 186.388i 0.464509 + 0.268184i
\(696\) 0 0
\(697\) −50.6469 87.7231i −0.0726642 0.125858i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1204.11i 1.71770i 0.512227 + 0.858850i \(0.328821\pi\)
−0.512227 + 0.858850i \(0.671179\pi\)
\(702\) 0 0
\(703\) −224.686 −0.319610
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 15.3184 8.84406i 0.0216667 0.0125093i
\(708\) 0 0
\(709\) −401.944 + 696.187i −0.566917 + 0.981928i 0.429952 + 0.902852i \(0.358530\pi\)
−0.996869 + 0.0790766i \(0.974803\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −70.7531 40.8493i −0.0992329 0.0572921i
\(714\) 0 0
\(715\) −90.6510 157.012i −0.126785 0.219597i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 66.1101i 0.0919474i −0.998943 0.0459737i \(-0.985361\pi\)
0.998943 0.0459737i \(-0.0146390\pi\)
\(720\) 0 0
\(721\) −20.2939 −0.0281469
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 126.637 73.1138i 0.174671 0.100847i
\(726\) 0 0
\(727\) −259.834 + 450.045i −0.357405 + 0.619044i −0.987527 0.157453i \(-0.949672\pi\)
0.630121 + 0.776497i \(0.283005\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −75.2918 43.4698i −0.102998 0.0594662i
\(732\) 0 0
\(733\) −80.1459 138.817i −0.109340 0.189382i 0.806163 0.591693i \(-0.201540\pi\)
−0.915503 + 0.402311i \(0.868207\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1799.24i 2.44130i
\(738\) 0 0
\(739\) 122.849 0.166237 0.0831184 0.996540i \(-0.473512\pi\)
0.0831184 + 0.996540i \(0.473512\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 585.944 338.295i 0.788619 0.455309i −0.0508572 0.998706i \(-0.516195\pi\)
0.839476 + 0.543397i \(0.182862\pi\)
\(744\) 0 0
\(745\) −180.398 + 312.458i −0.242145 + 0.419407i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −1144.06 660.523i −1.52745 0.881873i
\(750\) 0 0
\(751\) −171.430 296.925i −0.228268 0.395373i 0.729027 0.684485i \(-0.239973\pi\)
−0.957295 + 0.289113i \(0.906640\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 64.4229i 0.0853283i
\(756\) 0 0
\(757\) 452.220 0.597385 0.298692 0.954349i \(-0.403450\pi\)
0.298692 + 0.954349i \(0.403450\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −203.520 + 117.503i −0.267438 + 0.154405i −0.627723 0.778437i \(-0.716013\pi\)
0.360285 + 0.932842i \(0.382680\pi\)
\(762\) 0 0
\(763\) 92.1714 159.646i 0.120801 0.209234i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −14.8235 8.55834i −0.0193266 0.0111582i
\(768\) 0 0
\(769\) 318.439 + 551.552i 0.414095 + 0.717233i 0.995333 0.0965005i \(-0.0307649\pi\)
−0.581238 + 0.813733i \(0.697432\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 592.885i 0.766992i −0.923543 0.383496i \(-0.874720\pi\)
0.923543 0.383496i \(-0.125280\pi\)
\(774\) 0 0
\(775\) −261.029 −0.336811
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −745.059 + 430.160i −0.956430 + 0.552195i
\(780\) 0 0
\(781\) 436.545 756.118i 0.558956 0.968141i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 720.480 + 415.969i 0.917808 + 0.529897i
\(786\) 0 0
\(787\) −666.904 1155.11i −0.847400 1.46774i −0.883520 0.468393i \(-0.844833\pi\)
0.0361199 0.999347i \(-0.488500\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1360.67i 1.72020i
\(792\) 0 0
\(793\) −114.151 −0.143948
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 638.540 368.661i 0.801179 0.462561i −0.0427041 0.999088i \(-0.513597\pi\)
0.843883 + 0.536527i \(0.180264\pi\)
\(798\) 0 0
\(799\) −85.4347 + 147.977i −0.106927 + 0.185203i
\(800\) 0 0
\(801\) 0