Properties

Label 1725.4.a.m.1.2
Level $1725$
Weight $4$
Character 1725.1
Self dual yes
Analytic conductor $101.778$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1725,4,Mod(1,1725)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1725.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1725, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1725 = 3 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1725.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,6,2,0,6,28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(101.778294760\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 69)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 1725.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.82843 q^{2} +3.00000 q^{3} +6.65685 q^{4} +11.4853 q^{6} +16.8284 q^{7} -5.14214 q^{8} +9.00000 q^{9} -55.7990 q^{11} +19.9706 q^{12} +46.9706 q^{13} +64.4264 q^{14} -72.9411 q^{16} -62.1421 q^{17} +34.4558 q^{18} -141.882 q^{19} +50.4853 q^{21} -213.622 q^{22} -23.0000 q^{23} -15.4264 q^{24} +179.823 q^{26} +27.0000 q^{27} +112.024 q^{28} -288.676 q^{29} +68.7351 q^{31} -238.113 q^{32} -167.397 q^{33} -237.907 q^{34} +59.9117 q^{36} -179.622 q^{37} -543.186 q^{38} +140.912 q^{39} -71.5391 q^{41} +193.279 q^{42} +159.088 q^{43} -371.446 q^{44} -88.0538 q^{46} +272.902 q^{47} -218.823 q^{48} -59.8040 q^{49} -186.426 q^{51} +312.676 q^{52} +12.2843 q^{53} +103.368 q^{54} -86.5341 q^{56} -425.647 q^{57} -1105.18 q^{58} +426.891 q^{59} -243.407 q^{61} +263.147 q^{62} +151.456 q^{63} -328.068 q^{64} -640.867 q^{66} +81.0496 q^{67} -413.671 q^{68} -69.0000 q^{69} +696.930 q^{71} -46.2792 q^{72} -568.392 q^{73} -687.671 q^{74} -944.489 q^{76} -939.009 q^{77} +539.470 q^{78} +719.123 q^{79} +81.0000 q^{81} -273.882 q^{82} -1336.80 q^{83} +336.073 q^{84} +609.058 q^{86} -866.029 q^{87} +286.926 q^{88} -337.935 q^{89} +790.441 q^{91} -153.108 q^{92} +206.205 q^{93} +1044.78 q^{94} -714.338 q^{96} +1419.76 q^{97} -228.955 q^{98} -502.191 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 6 q^{3} + 2 q^{4} + 6 q^{6} + 28 q^{7} + 18 q^{8} + 18 q^{9} - 72 q^{11} + 6 q^{12} + 60 q^{13} + 44 q^{14} - 78 q^{16} - 96 q^{17} + 18 q^{18} - 148 q^{19} + 84 q^{21} - 184 q^{22} - 46 q^{23}+ \cdots - 648 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.82843 1.35355 0.676777 0.736188i \(-0.263376\pi\)
0.676777 + 0.736188i \(0.263376\pi\)
\(3\) 3.00000 0.577350
\(4\) 6.65685 0.832107
\(5\) 0 0
\(6\) 11.4853 0.781474
\(7\) 16.8284 0.908650 0.454325 0.890836i \(-0.349881\pi\)
0.454325 + 0.890836i \(0.349881\pi\)
\(8\) −5.14214 −0.227252
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −55.7990 −1.52946 −0.764729 0.644353i \(-0.777127\pi\)
−0.764729 + 0.644353i \(0.777127\pi\)
\(12\) 19.9706 0.480417
\(13\) 46.9706 1.00210 0.501050 0.865419i \(-0.332947\pi\)
0.501050 + 0.865419i \(0.332947\pi\)
\(14\) 64.4264 1.22991
\(15\) 0 0
\(16\) −72.9411 −1.13971
\(17\) −62.1421 −0.886570 −0.443285 0.896381i \(-0.646187\pi\)
−0.443285 + 0.896381i \(0.646187\pi\)
\(18\) 34.4558 0.451184
\(19\) −141.882 −1.71316 −0.856579 0.516015i \(-0.827415\pi\)
−0.856579 + 0.516015i \(0.827415\pi\)
\(20\) 0 0
\(21\) 50.4853 0.524609
\(22\) −213.622 −2.07020
\(23\) −23.0000 −0.208514
\(24\) −15.4264 −0.131204
\(25\) 0 0
\(26\) 179.823 1.35639
\(27\) 27.0000 0.192450
\(28\) 112.024 0.756094
\(29\) −288.676 −1.84848 −0.924238 0.381816i \(-0.875299\pi\)
−0.924238 + 0.381816i \(0.875299\pi\)
\(30\) 0 0
\(31\) 68.7351 0.398232 0.199116 0.979976i \(-0.436193\pi\)
0.199116 + 0.979976i \(0.436193\pi\)
\(32\) −238.113 −1.31540
\(33\) −167.397 −0.883032
\(34\) −237.907 −1.20002
\(35\) 0 0
\(36\) 59.9117 0.277369
\(37\) −179.622 −0.798101 −0.399050 0.916929i \(-0.630660\pi\)
−0.399050 + 0.916929i \(0.630660\pi\)
\(38\) −543.186 −2.31885
\(39\) 140.912 0.578562
\(40\) 0 0
\(41\) −71.5391 −0.272501 −0.136250 0.990674i \(-0.543505\pi\)
−0.136250 + 0.990674i \(0.543505\pi\)
\(42\) 193.279 0.710086
\(43\) 159.088 0.564203 0.282102 0.959385i \(-0.408968\pi\)
0.282102 + 0.959385i \(0.408968\pi\)
\(44\) −371.446 −1.27267
\(45\) 0 0
\(46\) −88.0538 −0.282235
\(47\) 272.902 0.846953 0.423476 0.905907i \(-0.360810\pi\)
0.423476 + 0.905907i \(0.360810\pi\)
\(48\) −218.823 −0.658009
\(49\) −59.8040 −0.174356
\(50\) 0 0
\(51\) −186.426 −0.511861
\(52\) 312.676 0.833854
\(53\) 12.2843 0.0318373 0.0159186 0.999873i \(-0.494933\pi\)
0.0159186 + 0.999873i \(0.494933\pi\)
\(54\) 103.368 0.260491
\(55\) 0 0
\(56\) −86.5341 −0.206493
\(57\) −425.647 −0.989093
\(58\) −1105.18 −2.50201
\(59\) 426.891 0.941975 0.470988 0.882140i \(-0.343898\pi\)
0.470988 + 0.882140i \(0.343898\pi\)
\(60\) 0 0
\(61\) −243.407 −0.510903 −0.255451 0.966822i \(-0.582224\pi\)
−0.255451 + 0.966822i \(0.582224\pi\)
\(62\) 263.147 0.539028
\(63\) 151.456 0.302883
\(64\) −328.068 −0.640758
\(65\) 0 0
\(66\) −640.867 −1.19523
\(67\) 81.0496 0.147788 0.0738940 0.997266i \(-0.476457\pi\)
0.0738940 + 0.997266i \(0.476457\pi\)
\(68\) −413.671 −0.737721
\(69\) −69.0000 −0.120386
\(70\) 0 0
\(71\) 696.930 1.16494 0.582468 0.812854i \(-0.302087\pi\)
0.582468 + 0.812854i \(0.302087\pi\)
\(72\) −46.2792 −0.0757508
\(73\) −568.392 −0.911305 −0.455652 0.890158i \(-0.650594\pi\)
−0.455652 + 0.890158i \(0.650594\pi\)
\(74\) −687.671 −1.08027
\(75\) 0 0
\(76\) −944.489 −1.42553
\(77\) −939.009 −1.38974
\(78\) 539.470 0.783115
\(79\) 719.123 1.02415 0.512074 0.858942i \(-0.328877\pi\)
0.512074 + 0.858942i \(0.328877\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) −273.882 −0.368844
\(83\) −1336.80 −1.76786 −0.883932 0.467616i \(-0.845113\pi\)
−0.883932 + 0.467616i \(0.845113\pi\)
\(84\) 336.073 0.436531
\(85\) 0 0
\(86\) 609.058 0.763679
\(87\) −866.029 −1.06722
\(88\) 286.926 0.347573
\(89\) −337.935 −0.402484 −0.201242 0.979542i \(-0.564498\pi\)
−0.201242 + 0.979542i \(0.564498\pi\)
\(90\) 0 0
\(91\) 790.441 0.910557
\(92\) −153.108 −0.173506
\(93\) 206.205 0.229919
\(94\) 1044.78 1.14640
\(95\) 0 0
\(96\) −714.338 −0.759446
\(97\) 1419.76 1.48613 0.743067 0.669217i \(-0.233370\pi\)
0.743067 + 0.669217i \(0.233370\pi\)
\(98\) −228.955 −0.236000
\(99\) −502.191 −0.509819
\(100\) 0 0
\(101\) 471.275 0.464293 0.232147 0.972681i \(-0.425425\pi\)
0.232147 + 0.972681i \(0.425425\pi\)
\(102\) −713.720 −0.692831
\(103\) 1129.00 1.08004 0.540019 0.841653i \(-0.318417\pi\)
0.540019 + 0.841653i \(0.318417\pi\)
\(104\) −241.529 −0.227729
\(105\) 0 0
\(106\) 47.0294 0.0430934
\(107\) −203.543 −0.183900 −0.0919499 0.995764i \(-0.529310\pi\)
−0.0919499 + 0.995764i \(0.529310\pi\)
\(108\) 179.735 0.160139
\(109\) −1938.34 −1.70329 −0.851646 0.524117i \(-0.824395\pi\)
−0.851646 + 0.524117i \(0.824395\pi\)
\(110\) 0 0
\(111\) −538.867 −0.460784
\(112\) −1227.48 −1.03559
\(113\) −1663.79 −1.38510 −0.692548 0.721371i \(-0.743512\pi\)
−0.692548 + 0.721371i \(0.743512\pi\)
\(114\) −1629.56 −1.33879
\(115\) 0 0
\(116\) −1921.68 −1.53813
\(117\) 422.735 0.334033
\(118\) 1634.32 1.27501
\(119\) −1045.75 −0.805581
\(120\) 0 0
\(121\) 1782.53 1.33924
\(122\) −931.866 −0.691534
\(123\) −214.617 −0.157328
\(124\) 457.559 0.331371
\(125\) 0 0
\(126\) 579.838 0.409969
\(127\) 734.676 0.513323 0.256661 0.966501i \(-0.417378\pi\)
0.256661 + 0.966501i \(0.417378\pi\)
\(128\) 648.917 0.448099
\(129\) 477.265 0.325743
\(130\) 0 0
\(131\) −2855.44 −1.90443 −0.952217 0.305421i \(-0.901203\pi\)
−0.952217 + 0.305421i \(0.901203\pi\)
\(132\) −1114.34 −0.734777
\(133\) −2387.66 −1.55666
\(134\) 310.293 0.200039
\(135\) 0 0
\(136\) 319.543 0.201475
\(137\) −1430.56 −0.892127 −0.446063 0.895001i \(-0.647174\pi\)
−0.446063 + 0.895001i \(0.647174\pi\)
\(138\) −264.161 −0.162949
\(139\) 288.410 0.175990 0.0879951 0.996121i \(-0.471954\pi\)
0.0879951 + 0.996121i \(0.471954\pi\)
\(140\) 0 0
\(141\) 818.705 0.488989
\(142\) 2668.15 1.57680
\(143\) −2620.91 −1.53267
\(144\) −656.470 −0.379902
\(145\) 0 0
\(146\) −2176.05 −1.23350
\(147\) −179.412 −0.100664
\(148\) −1195.72 −0.664105
\(149\) −1937.08 −1.06504 −0.532522 0.846416i \(-0.678756\pi\)
−0.532522 + 0.846416i \(0.678756\pi\)
\(150\) 0 0
\(151\) 1847.98 0.995935 0.497967 0.867196i \(-0.334080\pi\)
0.497967 + 0.867196i \(0.334080\pi\)
\(152\) 729.578 0.389320
\(153\) −559.279 −0.295523
\(154\) −3594.93 −1.88109
\(155\) 0 0
\(156\) 938.029 0.481426
\(157\) −51.2489 −0.0260516 −0.0130258 0.999915i \(-0.504146\pi\)
−0.0130258 + 0.999915i \(0.504146\pi\)
\(158\) 2753.11 1.38624
\(159\) 36.8528 0.0183812
\(160\) 0 0
\(161\) −387.054 −0.189467
\(162\) 310.103 0.150395
\(163\) 607.960 0.292142 0.146071 0.989274i \(-0.453337\pi\)
0.146071 + 0.989274i \(0.453337\pi\)
\(164\) −476.225 −0.226750
\(165\) 0 0
\(166\) −5117.83 −2.39290
\(167\) 3253.06 1.50736 0.753682 0.657240i \(-0.228276\pi\)
0.753682 + 0.657240i \(0.228276\pi\)
\(168\) −259.602 −0.119219
\(169\) 9.23376 0.00420290
\(170\) 0 0
\(171\) −1276.94 −0.571053
\(172\) 1059.03 0.469477
\(173\) −1975.75 −0.868288 −0.434144 0.900843i \(-0.642949\pi\)
−0.434144 + 0.900843i \(0.642949\pi\)
\(174\) −3315.53 −1.44454
\(175\) 0 0
\(176\) 4070.04 1.74313
\(177\) 1280.67 0.543850
\(178\) −1293.76 −0.544783
\(179\) 4261.58 1.77947 0.889737 0.456474i \(-0.150888\pi\)
0.889737 + 0.456474i \(0.150888\pi\)
\(180\) 0 0
\(181\) 2043.29 0.839095 0.419548 0.907733i \(-0.362189\pi\)
0.419548 + 0.907733i \(0.362189\pi\)
\(182\) 3026.14 1.23249
\(183\) −730.221 −0.294970
\(184\) 118.269 0.0473854
\(185\) 0 0
\(186\) 789.442 0.311208
\(187\) 3467.47 1.35597
\(188\) 1816.67 0.704755
\(189\) 454.368 0.174870
\(190\) 0 0
\(191\) −73.1001 −0.0276929 −0.0138464 0.999904i \(-0.504408\pi\)
−0.0138464 + 0.999904i \(0.504408\pi\)
\(192\) −984.204 −0.369942
\(193\) 227.901 0.0849982 0.0424991 0.999097i \(-0.486468\pi\)
0.0424991 + 0.999097i \(0.486468\pi\)
\(194\) 5435.46 2.01156
\(195\) 0 0
\(196\) −398.107 −0.145083
\(197\) −577.781 −0.208960 −0.104480 0.994527i \(-0.533318\pi\)
−0.104480 + 0.994527i \(0.533318\pi\)
\(198\) −1922.60 −0.690067
\(199\) −4569.01 −1.62758 −0.813790 0.581159i \(-0.802599\pi\)
−0.813790 + 0.581159i \(0.802599\pi\)
\(200\) 0 0
\(201\) 243.149 0.0853254
\(202\) 1804.24 0.628446
\(203\) −4857.97 −1.67962
\(204\) −1241.01 −0.425923
\(205\) 0 0
\(206\) 4322.31 1.46189
\(207\) −207.000 −0.0695048
\(208\) −3426.09 −1.14210
\(209\) 7916.89 2.62020
\(210\) 0 0
\(211\) −1816.71 −0.592736 −0.296368 0.955074i \(-0.595775\pi\)
−0.296368 + 0.955074i \(0.595775\pi\)
\(212\) 81.7746 0.0264920
\(213\) 2090.79 0.672576
\(214\) −779.251 −0.248918
\(215\) 0 0
\(216\) −138.838 −0.0437348
\(217\) 1156.70 0.361853
\(218\) −7420.78 −2.30550
\(219\) −1705.18 −0.526142
\(220\) 0 0
\(221\) −2918.85 −0.888431
\(222\) −2063.01 −0.623695
\(223\) −3494.47 −1.04936 −0.524679 0.851300i \(-0.675815\pi\)
−0.524679 + 0.851300i \(0.675815\pi\)
\(224\) −4007.06 −1.19524
\(225\) 0 0
\(226\) −6369.69 −1.87480
\(227\) −1044.51 −0.305402 −0.152701 0.988272i \(-0.548797\pi\)
−0.152701 + 0.988272i \(0.548797\pi\)
\(228\) −2833.47 −0.823031
\(229\) 2141.54 0.617979 0.308989 0.951065i \(-0.400009\pi\)
0.308989 + 0.951065i \(0.400009\pi\)
\(230\) 0 0
\(231\) −2817.03 −0.802367
\(232\) 1484.41 0.420071
\(233\) −716.802 −0.201542 −0.100771 0.994910i \(-0.532131\pi\)
−0.100771 + 0.994910i \(0.532131\pi\)
\(234\) 1618.41 0.452132
\(235\) 0 0
\(236\) 2841.75 0.783824
\(237\) 2157.37 0.591292
\(238\) −4003.59 −1.09040
\(239\) −3515.96 −0.951585 −0.475792 0.879558i \(-0.657839\pi\)
−0.475792 + 0.879558i \(0.657839\pi\)
\(240\) 0 0
\(241\) 5684.64 1.51942 0.759710 0.650262i \(-0.225341\pi\)
0.759710 + 0.650262i \(0.225341\pi\)
\(242\) 6824.28 1.81273
\(243\) 243.000 0.0641500
\(244\) −1620.33 −0.425126
\(245\) 0 0
\(246\) −821.647 −0.212952
\(247\) −6664.29 −1.71676
\(248\) −353.445 −0.0904991
\(249\) −4010.39 −1.02068
\(250\) 0 0
\(251\) −6946.90 −1.74695 −0.873475 0.486870i \(-0.838139\pi\)
−0.873475 + 0.486870i \(0.838139\pi\)
\(252\) 1008.22 0.252031
\(253\) 1283.38 0.318914
\(254\) 2812.65 0.694810
\(255\) 0 0
\(256\) 5108.88 1.24728
\(257\) 1776.30 0.431139 0.215569 0.976489i \(-0.430839\pi\)
0.215569 + 0.976489i \(0.430839\pi\)
\(258\) 1827.17 0.440910
\(259\) −3022.76 −0.725194
\(260\) 0 0
\(261\) −2598.09 −0.616159
\(262\) −10931.8 −2.57775
\(263\) −112.405 −0.0263544 −0.0131772 0.999913i \(-0.504195\pi\)
−0.0131772 + 0.999913i \(0.504195\pi\)
\(264\) 860.778 0.200671
\(265\) 0 0
\(266\) −9140.96 −2.10702
\(267\) −1013.81 −0.232374
\(268\) 539.536 0.122975
\(269\) −5916.43 −1.34101 −0.670504 0.741906i \(-0.733922\pi\)
−0.670504 + 0.741906i \(0.733922\pi\)
\(270\) 0 0
\(271\) −1011.96 −0.226836 −0.113418 0.993547i \(-0.536180\pi\)
−0.113418 + 0.993547i \(0.536180\pi\)
\(272\) 4532.72 1.01043
\(273\) 2371.32 0.525710
\(274\) −5476.81 −1.20754
\(275\) 0 0
\(276\) −459.323 −0.100174
\(277\) 3632.42 0.787910 0.393955 0.919130i \(-0.371107\pi\)
0.393955 + 0.919130i \(0.371107\pi\)
\(278\) 1104.16 0.238212
\(279\) 618.616 0.132744
\(280\) 0 0
\(281\) 4382.47 0.930378 0.465189 0.885211i \(-0.345986\pi\)
0.465189 + 0.885211i \(0.345986\pi\)
\(282\) 3134.35 0.661872
\(283\) 2692.29 0.565513 0.282757 0.959192i \(-0.408751\pi\)
0.282757 + 0.959192i \(0.408751\pi\)
\(284\) 4639.36 0.969350
\(285\) 0 0
\(286\) −10034.0 −2.07455
\(287\) −1203.89 −0.247608
\(288\) −2143.01 −0.438466
\(289\) −1051.35 −0.213995
\(290\) 0 0
\(291\) 4259.29 0.858020
\(292\) −3783.70 −0.758303
\(293\) −4023.60 −0.802256 −0.401128 0.916022i \(-0.631382\pi\)
−0.401128 + 0.916022i \(0.631382\pi\)
\(294\) −686.866 −0.136255
\(295\) 0 0
\(296\) 923.643 0.181370
\(297\) −1506.57 −0.294344
\(298\) −7415.96 −1.44159
\(299\) −1080.32 −0.208952
\(300\) 0 0
\(301\) 2677.21 0.512663
\(302\) 7074.84 1.34805
\(303\) 1413.83 0.268060
\(304\) 10349.1 1.95250
\(305\) 0 0
\(306\) −2141.16 −0.400006
\(307\) −5195.21 −0.965818 −0.482909 0.875670i \(-0.660420\pi\)
−0.482909 + 0.875670i \(0.660420\pi\)
\(308\) −6250.85 −1.15641
\(309\) 3387.01 0.623561
\(310\) 0 0
\(311\) 5440.59 0.991986 0.495993 0.868327i \(-0.334804\pi\)
0.495993 + 0.868327i \(0.334804\pi\)
\(312\) −724.587 −0.131480
\(313\) 7390.51 1.33462 0.667310 0.744780i \(-0.267445\pi\)
0.667310 + 0.744780i \(0.267445\pi\)
\(314\) −196.203 −0.0352623
\(315\) 0 0
\(316\) 4787.10 0.852200
\(317\) 8785.02 1.55652 0.778258 0.627944i \(-0.216103\pi\)
0.778258 + 0.627944i \(0.216103\pi\)
\(318\) 141.088 0.0248800
\(319\) 16107.8 2.82717
\(320\) 0 0
\(321\) −610.630 −0.106175
\(322\) −1481.81 −0.256453
\(323\) 8816.87 1.51883
\(324\) 539.205 0.0924563
\(325\) 0 0
\(326\) 2327.53 0.395429
\(327\) −5815.01 −0.983396
\(328\) 367.864 0.0619265
\(329\) 4592.50 0.769583
\(330\) 0 0
\(331\) −7998.03 −1.32813 −0.664066 0.747674i \(-0.731170\pi\)
−0.664066 + 0.747674i \(0.731170\pi\)
\(332\) −8898.87 −1.47105
\(333\) −1616.60 −0.266034
\(334\) 12454.1 2.04030
\(335\) 0 0
\(336\) −3682.45 −0.597900
\(337\) 5572.96 0.900827 0.450413 0.892820i \(-0.351277\pi\)
0.450413 + 0.892820i \(0.351277\pi\)
\(338\) 35.3508 0.00568885
\(339\) −4991.36 −0.799686
\(340\) 0 0
\(341\) −3835.35 −0.609078
\(342\) −4888.67 −0.772951
\(343\) −6778.56 −1.06708
\(344\) −818.054 −0.128217
\(345\) 0 0
\(346\) −7564.03 −1.17527
\(347\) 8070.32 1.24852 0.624262 0.781215i \(-0.285400\pi\)
0.624262 + 0.781215i \(0.285400\pi\)
\(348\) −5765.03 −0.888040
\(349\) −10343.3 −1.58644 −0.793218 0.608937i \(-0.791596\pi\)
−0.793218 + 0.608937i \(0.791596\pi\)
\(350\) 0 0
\(351\) 1268.21 0.192854
\(352\) 13286.4 2.01185
\(353\) 2326.06 0.350718 0.175359 0.984505i \(-0.443891\pi\)
0.175359 + 0.984505i \(0.443891\pi\)
\(354\) 4902.97 0.736130
\(355\) 0 0
\(356\) −2249.59 −0.334910
\(357\) −3137.26 −0.465102
\(358\) 16315.2 2.40861
\(359\) −3333.39 −0.490054 −0.245027 0.969516i \(-0.578797\pi\)
−0.245027 + 0.969516i \(0.578797\pi\)
\(360\) 0 0
\(361\) 13271.6 1.93491
\(362\) 7822.57 1.13576
\(363\) 5347.58 0.773210
\(364\) 5261.85 0.757681
\(365\) 0 0
\(366\) −2795.60 −0.399258
\(367\) −6803.73 −0.967716 −0.483858 0.875147i \(-0.660765\pi\)
−0.483858 + 0.875147i \(0.660765\pi\)
\(368\) 1677.65 0.237645
\(369\) −643.852 −0.0908336
\(370\) 0 0
\(371\) 206.725 0.0289289
\(372\) 1372.68 0.191317
\(373\) −628.598 −0.0872589 −0.0436294 0.999048i \(-0.513892\pi\)
−0.0436294 + 0.999048i \(0.513892\pi\)
\(374\) 13275.0 1.83538
\(375\) 0 0
\(376\) −1403.30 −0.192472
\(377\) −13559.3 −1.85236
\(378\) 1739.51 0.236695
\(379\) 3289.15 0.445785 0.222892 0.974843i \(-0.428450\pi\)
0.222892 + 0.974843i \(0.428450\pi\)
\(380\) 0 0
\(381\) 2204.03 0.296367
\(382\) −279.859 −0.0374838
\(383\) 1889.81 0.252128 0.126064 0.992022i \(-0.459766\pi\)
0.126064 + 0.992022i \(0.459766\pi\)
\(384\) 1946.75 0.258710
\(385\) 0 0
\(386\) 872.501 0.115050
\(387\) 1431.79 0.188068
\(388\) 9451.15 1.23662
\(389\) −569.046 −0.0741692 −0.0370846 0.999312i \(-0.511807\pi\)
−0.0370846 + 0.999312i \(0.511807\pi\)
\(390\) 0 0
\(391\) 1429.27 0.184863
\(392\) 307.520 0.0396228
\(393\) −8566.32 −1.09953
\(394\) −2211.99 −0.282839
\(395\) 0 0
\(396\) −3343.01 −0.424224
\(397\) −4092.11 −0.517323 −0.258661 0.965968i \(-0.583281\pi\)
−0.258661 + 0.965968i \(0.583281\pi\)
\(398\) −17492.1 −2.20302
\(399\) −7162.97 −0.898739
\(400\) 0 0
\(401\) 3867.00 0.481568 0.240784 0.970579i \(-0.422595\pi\)
0.240784 + 0.970579i \(0.422595\pi\)
\(402\) 930.878 0.115492
\(403\) 3228.52 0.399068
\(404\) 3137.21 0.386342
\(405\) 0 0
\(406\) −18598.4 −2.27345
\(407\) 10022.7 1.22066
\(408\) 958.630 0.116322
\(409\) −15631.6 −1.88981 −0.944906 0.327343i \(-0.893847\pi\)
−0.944906 + 0.327343i \(0.893847\pi\)
\(410\) 0 0
\(411\) −4291.69 −0.515070
\(412\) 7515.61 0.898708
\(413\) 7183.91 0.855925
\(414\) −792.484 −0.0940785
\(415\) 0 0
\(416\) −11184.3 −1.31816
\(417\) 865.231 0.101608
\(418\) 30309.2 3.54658
\(419\) −3562.17 −0.415330 −0.207665 0.978200i \(-0.566586\pi\)
−0.207665 + 0.978200i \(0.566586\pi\)
\(420\) 0 0
\(421\) 10576.0 1.22433 0.612166 0.790729i \(-0.290298\pi\)
0.612166 + 0.790729i \(0.290298\pi\)
\(422\) −6955.13 −0.802299
\(423\) 2456.11 0.282318
\(424\) −63.1674 −0.00723509
\(425\) 0 0
\(426\) 8004.44 0.910367
\(427\) −4096.16 −0.464232
\(428\) −1354.96 −0.153024
\(429\) −7862.73 −0.884886
\(430\) 0 0
\(431\) 6965.77 0.778490 0.389245 0.921134i \(-0.372736\pi\)
0.389245 + 0.921134i \(0.372736\pi\)
\(432\) −1969.41 −0.219336
\(433\) 16073.5 1.78393 0.891967 0.452100i \(-0.149325\pi\)
0.891967 + 0.452100i \(0.149325\pi\)
\(434\) 4428.35 0.489787
\(435\) 0 0
\(436\) −12903.2 −1.41732
\(437\) 3263.29 0.357218
\(438\) −6528.14 −0.712161
\(439\) −613.988 −0.0667518 −0.0333759 0.999443i \(-0.510626\pi\)
−0.0333759 + 0.999443i \(0.510626\pi\)
\(440\) 0 0
\(441\) −538.236 −0.0581186
\(442\) −11174.6 −1.20254
\(443\) 263.475 0.0282575 0.0141288 0.999900i \(-0.495503\pi\)
0.0141288 + 0.999900i \(0.495503\pi\)
\(444\) −3587.16 −0.383421
\(445\) 0 0
\(446\) −13378.3 −1.42036
\(447\) −5811.23 −0.614903
\(448\) −5520.87 −0.582225
\(449\) 1644.47 0.172845 0.0864226 0.996259i \(-0.472456\pi\)
0.0864226 + 0.996259i \(0.472456\pi\)
\(450\) 0 0
\(451\) 3991.81 0.416778
\(452\) −11075.6 −1.15255
\(453\) 5543.93 0.575003
\(454\) −3998.81 −0.413378
\(455\) 0 0
\(456\) 2188.73 0.224774
\(457\) 16190.9 1.65728 0.828641 0.559781i \(-0.189115\pi\)
0.828641 + 0.559781i \(0.189115\pi\)
\(458\) 8198.74 0.836467
\(459\) −1677.84 −0.170620
\(460\) 0 0
\(461\) 5783.08 0.584262 0.292131 0.956378i \(-0.405636\pi\)
0.292131 + 0.956378i \(0.405636\pi\)
\(462\) −10784.8 −1.08605
\(463\) 3753.34 0.376744 0.188372 0.982098i \(-0.439679\pi\)
0.188372 + 0.982098i \(0.439679\pi\)
\(464\) 21056.4 2.10672
\(465\) 0 0
\(466\) −2744.23 −0.272798
\(467\) 8441.21 0.836430 0.418215 0.908348i \(-0.362656\pi\)
0.418215 + 0.908348i \(0.362656\pi\)
\(468\) 2814.09 0.277951
\(469\) 1363.94 0.134287
\(470\) 0 0
\(471\) −153.747 −0.0150409
\(472\) −2195.13 −0.214066
\(473\) −8876.97 −0.862925
\(474\) 8259.33 0.800345
\(475\) 0 0
\(476\) −6961.43 −0.670329
\(477\) 110.558 0.0106124
\(478\) −13460.6 −1.28802
\(479\) −1001.54 −0.0955359 −0.0477680 0.998858i \(-0.515211\pi\)
−0.0477680 + 0.998858i \(0.515211\pi\)
\(480\) 0 0
\(481\) −8436.96 −0.799776
\(482\) 21763.2 2.05662
\(483\) −1161.16 −0.109389
\(484\) 11866.0 1.11439
\(485\) 0 0
\(486\) 930.308 0.0868305
\(487\) −13740.3 −1.27851 −0.639253 0.768997i \(-0.720756\pi\)
−0.639253 + 0.768997i \(0.720756\pi\)
\(488\) 1251.63 0.116104
\(489\) 1823.88 0.168668
\(490\) 0 0
\(491\) −10708.1 −0.984217 −0.492109 0.870534i \(-0.663774\pi\)
−0.492109 + 0.870534i \(0.663774\pi\)
\(492\) −1428.68 −0.130914
\(493\) 17939.0 1.63880
\(494\) −25513.7 −2.32372
\(495\) 0 0
\(496\) −5013.61 −0.453867
\(497\) 11728.2 1.05852
\(498\) −15353.5 −1.38154
\(499\) 9630.22 0.863944 0.431972 0.901887i \(-0.357818\pi\)
0.431972 + 0.901887i \(0.357818\pi\)
\(500\) 0 0
\(501\) 9759.19 0.870277
\(502\) −26595.7 −2.36459
\(503\) −18170.1 −1.61067 −0.805334 0.592822i \(-0.798014\pi\)
−0.805334 + 0.592822i \(0.798014\pi\)
\(504\) −778.806 −0.0688309
\(505\) 0 0
\(506\) 4913.31 0.431667
\(507\) 27.7013 0.00242654
\(508\) 4890.63 0.427139
\(509\) 12525.5 1.09073 0.545365 0.838199i \(-0.316391\pi\)
0.545365 + 0.838199i \(0.316391\pi\)
\(510\) 0 0
\(511\) −9565.14 −0.828057
\(512\) 14367.6 1.24017
\(513\) −3830.82 −0.329698
\(514\) 6800.45 0.583570
\(515\) 0 0
\(516\) 3177.08 0.271053
\(517\) −15227.6 −1.29538
\(518\) −11572.4 −0.981589
\(519\) −5927.26 −0.501306
\(520\) 0 0
\(521\) 3631.35 0.305360 0.152680 0.988276i \(-0.451210\pi\)
0.152680 + 0.988276i \(0.451210\pi\)
\(522\) −9946.58 −0.834004
\(523\) −12118.1 −1.01317 −0.506584 0.862191i \(-0.669092\pi\)
−0.506584 + 0.862191i \(0.669092\pi\)
\(524\) −19008.2 −1.58469
\(525\) 0 0
\(526\) −430.336 −0.0356721
\(527\) −4271.34 −0.353060
\(528\) 12210.1 1.00640
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) 3842.02 0.313992
\(532\) −15894.3 −1.29531
\(533\) −3360.23 −0.273073
\(534\) −3881.28 −0.314531
\(535\) 0 0
\(536\) −416.768 −0.0335852
\(537\) 12784.8 1.02738
\(538\) −22650.6 −1.81513
\(539\) 3337.01 0.266670
\(540\) 0 0
\(541\) −24466.6 −1.94437 −0.972184 0.234220i \(-0.924746\pi\)
−0.972184 + 0.234220i \(0.924746\pi\)
\(542\) −3874.23 −0.307034
\(543\) 6129.86 0.484452
\(544\) 14796.8 1.16619
\(545\) 0 0
\(546\) 9078.43 0.711577
\(547\) 9781.99 0.764621 0.382311 0.924034i \(-0.375128\pi\)
0.382311 + 0.924034i \(0.375128\pi\)
\(548\) −9523.06 −0.742345
\(549\) −2190.66 −0.170301
\(550\) 0 0
\(551\) 40958.0 3.16673
\(552\) 354.807 0.0273580
\(553\) 12101.7 0.930591
\(554\) 13906.5 1.06648
\(555\) 0 0
\(556\) 1919.91 0.146443
\(557\) 2198.74 0.167260 0.0836300 0.996497i \(-0.473349\pi\)
0.0836300 + 0.996497i \(0.473349\pi\)
\(558\) 2368.32 0.179676
\(559\) 7472.47 0.565388
\(560\) 0 0
\(561\) 10402.4 0.782870
\(562\) 16778.0 1.25932
\(563\) −7927.38 −0.593427 −0.296714 0.954967i \(-0.595891\pi\)
−0.296714 + 0.954967i \(0.595891\pi\)
\(564\) 5450.00 0.406891
\(565\) 0 0
\(566\) 10307.3 0.765453
\(567\) 1363.10 0.100961
\(568\) −3583.71 −0.264734
\(569\) −18860.7 −1.38960 −0.694799 0.719204i \(-0.744507\pi\)
−0.694799 + 0.719204i \(0.744507\pi\)
\(570\) 0 0
\(571\) −1044.79 −0.0765726 −0.0382863 0.999267i \(-0.512190\pi\)
−0.0382863 + 0.999267i \(0.512190\pi\)
\(572\) −17447.0 −1.27534
\(573\) −219.300 −0.0159885
\(574\) −4609.01 −0.335150
\(575\) 0 0
\(576\) −2952.61 −0.213586
\(577\) 3366.04 0.242860 0.121430 0.992600i \(-0.461252\pi\)
0.121430 + 0.992600i \(0.461252\pi\)
\(578\) −4025.04 −0.289653
\(579\) 683.702 0.0490737
\(580\) 0 0
\(581\) −22496.2 −1.60637
\(582\) 16306.4 1.16138
\(583\) −685.450 −0.0486937
\(584\) 2922.75 0.207096
\(585\) 0 0
\(586\) −15404.1 −1.08590
\(587\) 17910.9 1.25939 0.629696 0.776842i \(-0.283180\pi\)
0.629696 + 0.776842i \(0.283180\pi\)
\(588\) −1194.32 −0.0837635
\(589\) −9752.29 −0.682234
\(590\) 0 0
\(591\) −1733.34 −0.120643
\(592\) 13101.9 0.909600
\(593\) −3396.99 −0.235240 −0.117620 0.993059i \(-0.537527\pi\)
−0.117620 + 0.993059i \(0.537527\pi\)
\(594\) −5767.80 −0.398411
\(595\) 0 0
\(596\) −12894.8 −0.886230
\(597\) −13707.0 −0.939684
\(598\) −4135.94 −0.282828
\(599\) −139.199 −0.00949505 −0.00474752 0.999989i \(-0.501511\pi\)
−0.00474752 + 0.999989i \(0.501511\pi\)
\(600\) 0 0
\(601\) 1384.91 0.0939959 0.0469979 0.998895i \(-0.485035\pi\)
0.0469979 + 0.998895i \(0.485035\pi\)
\(602\) 10249.5 0.693917
\(603\) 729.447 0.0492626
\(604\) 12301.7 0.828724
\(605\) 0 0
\(606\) 5412.73 0.362833
\(607\) −1928.79 −0.128974 −0.0644871 0.997919i \(-0.520541\pi\)
−0.0644871 + 0.997919i \(0.520541\pi\)
\(608\) 33784.0 2.25349
\(609\) −14573.9 −0.969728
\(610\) 0 0
\(611\) 12818.3 0.848731
\(612\) −3723.04 −0.245907
\(613\) −14251.4 −0.939001 −0.469500 0.882932i \(-0.655566\pi\)
−0.469500 + 0.882932i \(0.655566\pi\)
\(614\) −19889.5 −1.30729
\(615\) 0 0
\(616\) 4828.51 0.315822
\(617\) 6803.77 0.443938 0.221969 0.975054i \(-0.428752\pi\)
0.221969 + 0.975054i \(0.428752\pi\)
\(618\) 12966.9 0.844023
\(619\) 11856.9 0.769904 0.384952 0.922937i \(-0.374218\pi\)
0.384952 + 0.922937i \(0.374218\pi\)
\(620\) 0 0
\(621\) −621.000 −0.0401286
\(622\) 20828.9 1.34271
\(623\) −5686.92 −0.365717
\(624\) −10278.3 −0.659390
\(625\) 0 0
\(626\) 28294.0 1.80648
\(627\) 23750.7 1.51278
\(628\) −341.157 −0.0216778
\(629\) 11162.1 0.707572
\(630\) 0 0
\(631\) −15491.7 −0.977362 −0.488681 0.872463i \(-0.662522\pi\)
−0.488681 + 0.872463i \(0.662522\pi\)
\(632\) −3697.83 −0.232740
\(633\) −5450.12 −0.342216
\(634\) 33632.8 2.10683
\(635\) 0 0
\(636\) 245.324 0.0152952
\(637\) −2809.03 −0.174722
\(638\) 61667.7 3.82672
\(639\) 6272.37 0.388312
\(640\) 0 0
\(641\) −18427.5 −1.13548 −0.567740 0.823208i \(-0.692182\pi\)
−0.567740 + 0.823208i \(0.692182\pi\)
\(642\) −2337.75 −0.143713
\(643\) −4164.58 −0.255420 −0.127710 0.991812i \(-0.540763\pi\)
−0.127710 + 0.991812i \(0.540763\pi\)
\(644\) −2576.56 −0.157656
\(645\) 0 0
\(646\) 33754.7 2.05582
\(647\) −24965.0 −1.51697 −0.758483 0.651693i \(-0.774059\pi\)
−0.758483 + 0.651693i \(0.774059\pi\)
\(648\) −416.513 −0.0252503
\(649\) −23820.1 −1.44071
\(650\) 0 0
\(651\) 3470.11 0.208916
\(652\) 4047.10 0.243093
\(653\) 19702.6 1.18074 0.590370 0.807133i \(-0.298982\pi\)
0.590370 + 0.807133i \(0.298982\pi\)
\(654\) −22262.3 −1.33108
\(655\) 0 0
\(656\) 5218.14 0.310571
\(657\) −5115.53 −0.303768
\(658\) 17582.1 1.04167
\(659\) −19243.1 −1.13749 −0.568744 0.822515i \(-0.692571\pi\)
−0.568744 + 0.822515i \(0.692571\pi\)
\(660\) 0 0
\(661\) 11725.0 0.689939 0.344969 0.938614i \(-0.387889\pi\)
0.344969 + 0.938614i \(0.387889\pi\)
\(662\) −30619.9 −1.79770
\(663\) −8756.55 −0.512936
\(664\) 6874.00 0.401751
\(665\) 0 0
\(666\) −6189.04 −0.360091
\(667\) 6639.55 0.385434
\(668\) 21655.2 1.25429
\(669\) −10483.4 −0.605847
\(670\) 0 0
\(671\) 13581.9 0.781404
\(672\) −12021.2 −0.690070
\(673\) 27664.1 1.58450 0.792252 0.610194i \(-0.208909\pi\)
0.792252 + 0.610194i \(0.208909\pi\)
\(674\) 21335.7 1.21932
\(675\) 0 0
\(676\) 61.4678 0.00349726
\(677\) −16852.0 −0.956683 −0.478342 0.878174i \(-0.658762\pi\)
−0.478342 + 0.878174i \(0.658762\pi\)
\(678\) −19109.1 −1.08242
\(679\) 23892.4 1.35038
\(680\) 0 0
\(681\) −3133.52 −0.176324
\(682\) −14683.3 −0.824420
\(683\) −24478.8 −1.37138 −0.685692 0.727891i \(-0.740500\pi\)
−0.685692 + 0.727891i \(0.740500\pi\)
\(684\) −8500.41 −0.475177
\(685\) 0 0
\(686\) −25951.2 −1.44435
\(687\) 6424.63 0.356790
\(688\) −11604.1 −0.643025
\(689\) 576.999 0.0319041
\(690\) 0 0
\(691\) 22681.5 1.24869 0.624346 0.781148i \(-0.285365\pi\)
0.624346 + 0.781148i \(0.285365\pi\)
\(692\) −13152.3 −0.722508
\(693\) −8451.08 −0.463247
\(694\) 30896.6 1.68994
\(695\) 0 0
\(696\) 4453.24 0.242528
\(697\) 4445.59 0.241591
\(698\) −39598.7 −2.14733
\(699\) −2150.41 −0.116360
\(700\) 0 0
\(701\) 6898.78 0.371703 0.185851 0.982578i \(-0.440496\pi\)
0.185851 + 0.982578i \(0.440496\pi\)
\(702\) 4855.23 0.261038
\(703\) 25485.2 1.36727
\(704\) 18305.9 0.980012
\(705\) 0 0
\(706\) 8905.15 0.474716
\(707\) 7930.82 0.421880
\(708\) 8525.26 0.452541
\(709\) −1725.21 −0.0913845 −0.0456922 0.998956i \(-0.514549\pi\)
−0.0456922 + 0.998956i \(0.514549\pi\)
\(710\) 0 0
\(711\) 6472.11 0.341382
\(712\) 1737.71 0.0914654
\(713\) −1580.91 −0.0830370
\(714\) −12010.8 −0.629541
\(715\) 0 0
\(716\) 28368.7 1.48071
\(717\) −10547.9 −0.549398
\(718\) −12761.6 −0.663315
\(719\) −9213.52 −0.477895 −0.238947 0.971033i \(-0.576802\pi\)
−0.238947 + 0.971033i \(0.576802\pi\)
\(720\) 0 0
\(721\) 18999.4 0.981377
\(722\) 50809.3 2.61901
\(723\) 17053.9 0.877237
\(724\) 13601.9 0.698217
\(725\) 0 0
\(726\) 20472.8 1.04658
\(727\) −23768.6 −1.21256 −0.606278 0.795253i \(-0.707338\pi\)
−0.606278 + 0.795253i \(0.707338\pi\)
\(728\) −4064.55 −0.206926
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −9886.09 −0.500205
\(732\) −4860.98 −0.245447
\(733\) −10711.8 −0.539767 −0.269884 0.962893i \(-0.586985\pi\)
−0.269884 + 0.962893i \(0.586985\pi\)
\(734\) −26047.6 −1.30986
\(735\) 0 0
\(736\) 5476.59 0.274280
\(737\) −4522.49 −0.226035
\(738\) −2464.94 −0.122948
\(739\) −25572.2 −1.27292 −0.636461 0.771309i \(-0.719602\pi\)
−0.636461 + 0.771309i \(0.719602\pi\)
\(740\) 0 0
\(741\) −19992.9 −0.991169
\(742\) 791.431 0.0391568
\(743\) 3613.01 0.178397 0.0891983 0.996014i \(-0.471570\pi\)
0.0891983 + 0.996014i \(0.471570\pi\)
\(744\) −1060.34 −0.0522497
\(745\) 0 0
\(746\) −2406.54 −0.118110
\(747\) −12031.2 −0.589288
\(748\) 23082.4 1.12831
\(749\) −3425.31 −0.167100
\(750\) 0 0
\(751\) 26247.1 1.27532 0.637662 0.770316i \(-0.279902\pi\)
0.637662 + 0.770316i \(0.279902\pi\)
\(752\) −19905.7 −0.965277
\(753\) −20840.7 −1.00860
\(754\) −51910.7 −2.50726
\(755\) 0 0
\(756\) 3024.66 0.145510
\(757\) 12700.0 0.609761 0.304880 0.952391i \(-0.401383\pi\)
0.304880 + 0.952391i \(0.401383\pi\)
\(758\) 12592.3 0.603393
\(759\) 3850.13 0.184125
\(760\) 0 0
\(761\) 22485.4 1.07108 0.535542 0.844508i \(-0.320107\pi\)
0.535542 + 0.844508i \(0.320107\pi\)
\(762\) 8437.96 0.401148
\(763\) −32619.1 −1.54770
\(764\) −486.617 −0.0230434
\(765\) 0 0
\(766\) 7235.01 0.341268
\(767\) 20051.3 0.943953
\(768\) 15326.6 0.720120
\(769\) −7141.34 −0.334881 −0.167440 0.985882i \(-0.553550\pi\)
−0.167440 + 0.985882i \(0.553550\pi\)
\(770\) 0 0
\(771\) 5328.91 0.248918
\(772\) 1517.10 0.0707276
\(773\) −15819.1 −0.736060 −0.368030 0.929814i \(-0.619968\pi\)
−0.368030 + 0.929814i \(0.619968\pi\)
\(774\) 5481.52 0.254560
\(775\) 0 0
\(776\) −7300.61 −0.337728
\(777\) −9068.29 −0.418691
\(778\) −2178.55 −0.100392
\(779\) 10150.1 0.466837
\(780\) 0 0
\(781\) −38888.0 −1.78172
\(782\) 5471.85 0.250221
\(783\) −7794.26 −0.355739
\(784\) 4362.17 0.198714
\(785\) 0 0
\(786\) −32795.5 −1.48827
\(787\) 2959.52 0.134048 0.0670239 0.997751i \(-0.478650\pi\)
0.0670239 + 0.997751i \(0.478650\pi\)
\(788\) −3846.21 −0.173877
\(789\) −337.216 −0.0152157
\(790\) 0 0
\(791\) −27998.9 −1.25857
\(792\) 2582.33 0.115858
\(793\) −11433.0 −0.511975
\(794\) −15666.3 −0.700224
\(795\) 0 0
\(796\) −30415.2 −1.35432
\(797\) −19932.4 −0.885876 −0.442938 0.896552i \(-0.646064\pi\)
−0.442938 + 0.896552i \(0.646064\pi\)
\(798\) −27422.9 −1.21649
\(799\) −16958.7 −0.750883
\(800\) 0 0
\(801\) −3041.42 −0.134161
\(802\) 14804.5 0.651828
\(803\) 31715.7 1.39380
\(804\) 1618.61 0.0709998
\(805\) 0 0
\(806\) 12360.2 0.540159
\(807\) −17749.3 −0.774232
\(808\) −2423.36 −0.105512
\(809\) −7334.79 −0.318761 −0.159380 0.987217i \(-0.550950\pi\)
−0.159380 + 0.987217i \(0.550950\pi\)
\(810\) 0 0
\(811\) −15908.5 −0.688807 −0.344404 0.938822i \(-0.611919\pi\)
−0.344404 + 0.938822i \(0.611919\pi\)
\(812\) −32338.8 −1.39762
\(813\) −3035.89 −0.130964
\(814\) 38371.4 1.65223
\(815\) 0 0
\(816\) 13598.2 0.583371
\(817\) −22571.8 −0.966570
\(818\) −59844.4 −2.55796
\(819\) 7113.97 0.303519
\(820\) 0 0
\(821\) −6167.56 −0.262180 −0.131090 0.991371i \(-0.541848\pi\)
−0.131090 + 0.991371i \(0.541848\pi\)
\(822\) −16430.4 −0.697174
\(823\) 45695.7 1.93542 0.967710 0.252066i \(-0.0811101\pi\)
0.967710 + 0.252066i \(0.0811101\pi\)
\(824\) −5805.49 −0.245441
\(825\) 0 0
\(826\) 27503.1 1.15854
\(827\) −10905.6 −0.458554 −0.229277 0.973361i \(-0.573636\pi\)
−0.229277 + 0.973361i \(0.573636\pi\)
\(828\) −1377.97 −0.0578354
\(829\) −4256.81 −0.178341 −0.0891707 0.996016i \(-0.528422\pi\)
−0.0891707 + 0.996016i \(0.528422\pi\)
\(830\) 0 0
\(831\) 10897.3 0.454900
\(832\) −15409.5 −0.642103
\(833\) 3716.35 0.154579
\(834\) 3312.47 0.137532
\(835\) 0 0
\(836\) 52701.6 2.18029
\(837\) 1855.85 0.0766397
\(838\) −13637.5 −0.562171
\(839\) −15166.7 −0.624092 −0.312046 0.950067i \(-0.601014\pi\)
−0.312046 + 0.950067i \(0.601014\pi\)
\(840\) 0 0
\(841\) 58944.9 2.41687
\(842\) 40489.5 1.65720
\(843\) 13147.4 0.537154
\(844\) −12093.6 −0.493219
\(845\) 0 0
\(846\) 9403.05 0.382132
\(847\) 29997.1 1.21690
\(848\) −896.029 −0.0362851
\(849\) 8076.88 0.326499
\(850\) 0 0
\(851\) 4131.31 0.166416
\(852\) 13918.1 0.559655
\(853\) 24050.4 0.965379 0.482690 0.875791i \(-0.339660\pi\)
0.482690 + 0.875791i \(0.339660\pi\)
\(854\) −15681.8 −0.628363
\(855\) 0 0
\(856\) 1046.65 0.0417917
\(857\) −39207.3 −1.56277 −0.781387 0.624047i \(-0.785487\pi\)
−0.781387 + 0.624047i \(0.785487\pi\)
\(858\) −30101.9 −1.19774
\(859\) −10527.2 −0.418142 −0.209071 0.977900i \(-0.567044\pi\)
−0.209071 + 0.977900i \(0.567044\pi\)
\(860\) 0 0
\(861\) −3611.67 −0.142956
\(862\) 26667.9 1.05373
\(863\) 11856.0 0.467651 0.233825 0.972279i \(-0.424876\pi\)
0.233825 + 0.972279i \(0.424876\pi\)
\(864\) −6429.04 −0.253149
\(865\) 0 0
\(866\) 61536.3 2.41465
\(867\) −3154.06 −0.123550
\(868\) 7700.00 0.301100
\(869\) −40126.3 −1.56639
\(870\) 0 0
\(871\) 3806.95 0.148098
\(872\) 9967.18 0.387077
\(873\) 12777.9 0.495378
\(874\) 12493.3 0.483514
\(875\) 0 0
\(876\) −11351.1 −0.437806
\(877\) −51435.9 −1.98046 −0.990232 0.139432i \(-0.955472\pi\)
−0.990232 + 0.139432i \(0.955472\pi\)
\(878\) −2350.61 −0.0903521
\(879\) −12070.8 −0.463183
\(880\) 0 0
\(881\) 8069.52 0.308592 0.154296 0.988025i \(-0.450689\pi\)
0.154296 + 0.988025i \(0.450689\pi\)
\(882\) −2060.60 −0.0786666
\(883\) 43901.7 1.67317 0.836586 0.547835i \(-0.184548\pi\)
0.836586 + 0.547835i \(0.184548\pi\)
\(884\) −19430.4 −0.739269
\(885\) 0 0
\(886\) 1008.70 0.0382481
\(887\) 5877.02 0.222470 0.111235 0.993794i \(-0.464519\pi\)
0.111235 + 0.993794i \(0.464519\pi\)
\(888\) 2770.93 0.104714
\(889\) 12363.4 0.466430
\(890\) 0 0
\(891\) −4519.72 −0.169940
\(892\) −23262.1 −0.873178
\(893\) −38719.9 −1.45097
\(894\) −22247.9 −0.832304
\(895\) 0 0
\(896\) 10920.2 0.407165
\(897\) −3240.97 −0.120639
\(898\) 6295.75 0.233955
\(899\) −19842.2 −0.736122
\(900\) 0 0
\(901\) −763.371 −0.0282259
\(902\) 15282.4 0.564132
\(903\) 8031.62 0.295986
\(904\) 8555.42 0.314767
\(905\) 0 0
\(906\) 21224.5 0.778298
\(907\) −1967.03 −0.0720110 −0.0360055 0.999352i \(-0.511463\pi\)
−0.0360055 + 0.999352i \(0.511463\pi\)
\(908\) −6953.12 −0.254127
\(909\) 4241.48 0.154764
\(910\) 0 0
\(911\) 21073.2 0.766396 0.383198 0.923666i \(-0.374823\pi\)
0.383198 + 0.923666i \(0.374823\pi\)
\(912\) 31047.2 1.12727
\(913\) 74592.0 2.70387
\(914\) 61985.6 2.24322
\(915\) 0 0
\(916\) 14255.9 0.514224
\(917\) −48052.6 −1.73046
\(918\) −6423.48 −0.230944
\(919\) −7748.69 −0.278135 −0.139067 0.990283i \(-0.544410\pi\)
−0.139067 + 0.990283i \(0.544410\pi\)
\(920\) 0 0
\(921\) −15585.6 −0.557616
\(922\) 22140.1 0.790830
\(923\) 32735.2 1.16738
\(924\) −18752.5 −0.667655
\(925\) 0 0
\(926\) 14369.4 0.509943
\(927\) 10161.0 0.360013
\(928\) 68737.5 2.43148
\(929\) 35683.4 1.26021 0.630105 0.776510i \(-0.283012\pi\)
0.630105 + 0.776510i \(0.283012\pi\)
\(930\) 0 0
\(931\) 8485.13 0.298699
\(932\) −4771.65 −0.167704
\(933\) 16321.8 0.572723
\(934\) 32316.6 1.13215
\(935\) 0 0
\(936\) −2173.76 −0.0759098
\(937\) −46259.2 −1.61283 −0.806414 0.591351i \(-0.798595\pi\)
−0.806414 + 0.591351i \(0.798595\pi\)
\(938\) 5221.74 0.181765
\(939\) 22171.5 0.770544
\(940\) 0 0
\(941\) 23519.2 0.814777 0.407388 0.913255i \(-0.366440\pi\)
0.407388 + 0.913255i \(0.366440\pi\)
\(942\) −588.608 −0.0203587
\(943\) 1645.40 0.0568203
\(944\) −31137.9 −1.07357
\(945\) 0 0
\(946\) −33984.8 −1.16801
\(947\) 52061.1 1.78644 0.893220 0.449621i \(-0.148441\pi\)
0.893220 + 0.449621i \(0.148441\pi\)
\(948\) 14361.3 0.492018
\(949\) −26697.7 −0.913218
\(950\) 0 0
\(951\) 26355.1 0.898655
\(952\) 5377.41 0.183070
\(953\) 15306.5 0.520278 0.260139 0.965571i \(-0.416232\pi\)
0.260139 + 0.965571i \(0.416232\pi\)
\(954\) 423.265 0.0143645
\(955\) 0 0
\(956\) −23405.3 −0.791820
\(957\) 48323.5 1.63226
\(958\) −3834.34 −0.129313
\(959\) −24074.1 −0.810631
\(960\) 0 0
\(961\) −25066.5 −0.841412
\(962\) −32300.3 −1.08254
\(963\) −1831.89 −0.0612999
\(964\) 37841.8 1.26432
\(965\) 0 0
\(966\) −4445.42 −0.148063
\(967\) −19036.6 −0.633068 −0.316534 0.948581i \(-0.602519\pi\)
−0.316534 + 0.948581i \(0.602519\pi\)
\(968\) −9166.00 −0.304345
\(969\) 26450.6 0.876900
\(970\) 0 0
\(971\) 9160.05 0.302740 0.151370 0.988477i \(-0.451632\pi\)
0.151370 + 0.988477i \(0.451632\pi\)
\(972\) 1617.62 0.0533797
\(973\) 4853.49 0.159914
\(974\) −52603.7 −1.73053
\(975\) 0 0
\(976\) 17754.4 0.582279
\(977\) −27640.7 −0.905122 −0.452561 0.891733i \(-0.649490\pi\)
−0.452561 + 0.891733i \(0.649490\pi\)
\(978\) 6982.59 0.228301
\(979\) 18856.4 0.615582
\(980\) 0 0
\(981\) −17445.0 −0.567764
\(982\) −40995.2 −1.33219
\(983\) −40382.6 −1.31028 −0.655140 0.755508i \(-0.727390\pi\)
−0.655140 + 0.755508i \(0.727390\pi\)
\(984\) 1103.59 0.0357533
\(985\) 0 0
\(986\) 68678.0 2.21821
\(987\) 13777.5 0.444319
\(988\) −44363.2 −1.42852
\(989\) −3659.03 −0.117645
\(990\) 0 0
\(991\) 17541.4 0.562283 0.281141 0.959666i \(-0.409287\pi\)
0.281141 + 0.959666i \(0.409287\pi\)
\(992\) −16366.7 −0.523834
\(993\) −23994.1 −0.766797
\(994\) 44900.7 1.43276
\(995\) 0 0
\(996\) −26696.6 −0.849312
\(997\) 42798.5 1.35952 0.679760 0.733435i \(-0.262084\pi\)
0.679760 + 0.733435i \(0.262084\pi\)
\(998\) 36868.6 1.16939
\(999\) −4849.80 −0.153595
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1725.4.a.m.1.2 2
5.4 even 2 69.4.a.b.1.1 2
15.14 odd 2 207.4.a.b.1.2 2
20.19 odd 2 1104.4.a.q.1.2 2
115.114 odd 2 1587.4.a.c.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
69.4.a.b.1.1 2 5.4 even 2
207.4.a.b.1.2 2 15.14 odd 2
1104.4.a.q.1.2 2 20.19 odd 2
1587.4.a.c.1.1 2 115.114 odd 2
1725.4.a.m.1.2 2 1.1 even 1 trivial