Defining parameters
| Level: | \( N \) | \(=\) | \( 17136 = 2^{4} \cdot 3^{2} \cdot 7 \cdot 17 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 17136.yy (of order \(48\) and degree \(16\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 476 \) |
| Character field: | \(\Q(\zeta_{48})\) | ||
| Sturm bound: | \(6912\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(17136, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 56064 | 5760 | 50304 |
| Cusp forms | 54528 | 5760 | 48768 |
| Eisenstein series | 1536 | 0 | 1536 |
Decomposition of \(S_{2}^{\mathrm{new}}(17136, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(17136, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(17136, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(476, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1428, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1904, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(4284, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(5712, [\chi])\)\(^{\oplus 2}\)