Properties

Label 1700.2.o.e.1101.5
Level $1700$
Weight $2$
Character 1700.1101
Analytic conductor $13.575$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1700,2,Mod(701,1700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1700.701"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1700, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1700 = 2^{2} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1700.o (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.5745683436\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} + 2 x^{10} + 2 x^{9} + 55 x^{8} - 106 x^{7} + 104 x^{6} + 102 x^{5} + 187 x^{4} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1101.5
Root \(-0.816234 + 0.816234i\) of defining polynomial
Character \(\chi\) \(=\) 1700.1101
Dual form 1700.2.o.e.701.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.816234 + 0.816234i) q^{3} +(-1.61257 + 1.61257i) q^{7} -1.66752i q^{9} +(-0.266636 + 0.266636i) q^{11} -3.60102 q^{13} +(-2.19722 - 3.48887i) q^{17} -6.27876i q^{19} -2.63247 q^{21} +(-0.733364 + 0.733364i) q^{23} +(3.80979 - 3.80979i) q^{27} +(-2.82135 - 2.82135i) q^{29} +(1.78478 + 1.78478i) q^{31} -0.435275 q^{33} +(-5.08154 - 5.08154i) q^{37} +(-2.93927 - 2.93927i) q^{39} +(4.70378 - 4.70378i) q^{41} -5.09923i q^{43} +4.28454 q^{47} +1.79924i q^{49} +(1.05429 - 4.64118i) q^{51} +12.5437i q^{53} +(5.12494 - 5.12494i) q^{57} -12.7130i q^{59} +(-1.34082 + 1.34082i) q^{61} +(2.68900 + 2.68900i) q^{63} -1.64269 q^{67} -1.19719 q^{69} +(-6.26361 - 6.26361i) q^{71} +(4.58807 + 4.58807i) q^{73} -0.859938i q^{77} +(3.25218 - 3.25218i) q^{79} +1.21679 q^{81} +6.23585i q^{83} -4.60576i q^{87} -6.37439 q^{89} +(5.80689 - 5.80689i) q^{91} +2.91360i q^{93} +(-10.8602 - 10.8602i) q^{97} +(0.444622 + 0.444622i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{3} + 4 q^{13} + 2 q^{17} - 8 q^{21} - 12 q^{23} - 2 q^{27} - 14 q^{29} - 14 q^{31} + 12 q^{33} - 2 q^{37} - 10 q^{41} + 4 q^{47} + 12 q^{51} - 30 q^{57} - 8 q^{61} - 38 q^{63} + 20 q^{67} - 8 q^{69}+ \cdots + 26 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1700\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(851\) \(1601\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.816234 + 0.816234i 0.471253 + 0.471253i 0.902320 0.431067i \(-0.141863\pi\)
−0.431067 + 0.902320i \(0.641863\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −1.61257 + 1.61257i −0.609494 + 0.609494i −0.942814 0.333320i \(-0.891831\pi\)
0.333320 + 0.942814i \(0.391831\pi\)
\(8\) 0 0
\(9\) 1.66752i 0.555841i
\(10\) 0 0
\(11\) −0.266636 + 0.266636i −0.0803938 + 0.0803938i −0.746160 0.665766i \(-0.768105\pi\)
0.665766 + 0.746160i \(0.268105\pi\)
\(12\) 0 0
\(13\) −3.60102 −0.998742 −0.499371 0.866388i \(-0.666436\pi\)
−0.499371 + 0.866388i \(0.666436\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.19722 3.48887i −0.532905 0.846175i
\(18\) 0 0
\(19\) 6.27876i 1.44045i −0.693742 0.720224i \(-0.744039\pi\)
0.693742 0.720224i \(-0.255961\pi\)
\(20\) 0 0
\(21\) −2.63247 −0.574452
\(22\) 0 0
\(23\) −0.733364 + 0.733364i −0.152917 + 0.152917i −0.779419 0.626502i \(-0.784486\pi\)
0.626502 + 0.779419i \(0.284486\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 3.80979 3.80979i 0.733195 0.733195i
\(28\) 0 0
\(29\) −2.82135 2.82135i −0.523911 0.523911i 0.394839 0.918750i \(-0.370800\pi\)
−0.918750 + 0.394839i \(0.870800\pi\)
\(30\) 0 0
\(31\) 1.78478 + 1.78478i 0.320556 + 0.320556i 0.848980 0.528424i \(-0.177217\pi\)
−0.528424 + 0.848980i \(0.677217\pi\)
\(32\) 0 0
\(33\) −0.435275 −0.0757716
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −5.08154 5.08154i −0.835400 0.835400i 0.152849 0.988249i \(-0.451155\pi\)
−0.988249 + 0.152849i \(0.951155\pi\)
\(38\) 0 0
\(39\) −2.93927 2.93927i −0.470660 0.470660i
\(40\) 0 0
\(41\) 4.70378 4.70378i 0.734608 0.734608i −0.236921 0.971529i \(-0.576138\pi\)
0.971529 + 0.236921i \(0.0761383\pi\)
\(42\) 0 0
\(43\) 5.09923i 0.777626i −0.921317 0.388813i \(-0.872885\pi\)
0.921317 0.388813i \(-0.127115\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.28454 0.624964 0.312482 0.949924i \(-0.398840\pi\)
0.312482 + 0.949924i \(0.398840\pi\)
\(48\) 0 0
\(49\) 1.79924i 0.257034i
\(50\) 0 0
\(51\) 1.05429 4.64118i 0.147630 0.649896i
\(52\) 0 0
\(53\) 12.5437i 1.72301i 0.507749 + 0.861505i \(0.330478\pi\)
−0.507749 + 0.861505i \(0.669522\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 5.12494 5.12494i 0.678815 0.678815i
\(58\) 0 0
\(59\) 12.7130i 1.65509i −0.561398 0.827546i \(-0.689736\pi\)
0.561398 0.827546i \(-0.310264\pi\)
\(60\) 0 0
\(61\) −1.34082 + 1.34082i −0.171675 + 0.171675i −0.787715 0.616040i \(-0.788736\pi\)
0.616040 + 0.787715i \(0.288736\pi\)
\(62\) 0 0
\(63\) 2.68900 + 2.68900i 0.338782 + 0.338782i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −1.64269 −0.200687 −0.100343 0.994953i \(-0.531994\pi\)
−0.100343 + 0.994953i \(0.531994\pi\)
\(68\) 0 0
\(69\) −1.19719 −0.144125
\(70\) 0 0
\(71\) −6.26361 6.26361i −0.743353 0.743353i 0.229868 0.973222i \(-0.426170\pi\)
−0.973222 + 0.229868i \(0.926170\pi\)
\(72\) 0 0
\(73\) 4.58807 + 4.58807i 0.536992 + 0.536992i 0.922644 0.385652i \(-0.126023\pi\)
−0.385652 + 0.922644i \(0.626023\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.859938i 0.0979991i
\(78\) 0 0
\(79\) 3.25218 3.25218i 0.365899 0.365899i −0.500080 0.865979i \(-0.666696\pi\)
0.865979 + 0.500080i \(0.166696\pi\)
\(80\) 0 0
\(81\) 1.21679 0.135199
\(82\) 0 0
\(83\) 6.23585i 0.684474i 0.939614 + 0.342237i \(0.111185\pi\)
−0.939614 + 0.342237i \(0.888815\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 4.60576i 0.493789i
\(88\) 0 0
\(89\) −6.37439 −0.675684 −0.337842 0.941203i \(-0.609697\pi\)
−0.337842 + 0.941203i \(0.609697\pi\)
\(90\) 0 0
\(91\) 5.80689 5.80689i 0.608727 0.608727i
\(92\) 0 0
\(93\) 2.91360i 0.302126i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −10.8602 10.8602i −1.10268 1.10268i −0.994086 0.108598i \(-0.965364\pi\)
−0.108598 0.994086i \(-0.534636\pi\)
\(98\) 0 0
\(99\) 0.444622 + 0.444622i 0.0446862 + 0.0446862i
\(100\) 0 0
\(101\) −13.7141 −1.36460 −0.682301 0.731072i \(-0.739020\pi\)
−0.682301 + 0.731072i \(0.739020\pi\)
\(102\) 0 0
\(103\) −3.79821 −0.374249 −0.187124 0.982336i \(-0.559917\pi\)
−0.187124 + 0.982336i \(0.559917\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.55320 + 2.55320i 0.246827 + 0.246827i 0.819667 0.572840i \(-0.194158\pi\)
−0.572840 + 0.819667i \(0.694158\pi\)
\(108\) 0 0
\(109\) 11.3394 11.3394i 1.08611 1.08611i 0.0901897 0.995925i \(-0.471253\pi\)
0.995925 0.0901897i \(-0.0287473\pi\)
\(110\) 0 0
\(111\) 8.29545i 0.787370i
\(112\) 0 0
\(113\) 1.83069 1.83069i 0.172217 0.172217i −0.615736 0.787953i \(-0.711141\pi\)
0.787953 + 0.615736i \(0.211141\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 6.00478i 0.555142i
\(118\) 0 0
\(119\) 9.16922 + 2.08287i 0.840541 + 0.190936i
\(120\) 0 0
\(121\) 10.8578i 0.987074i
\(122\) 0 0
\(123\) 7.67878 0.692372
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 8.13686i 0.722029i 0.932560 + 0.361015i \(0.117570\pi\)
−0.932560 + 0.361015i \(0.882430\pi\)
\(128\) 0 0
\(129\) 4.16217 4.16217i 0.366458 0.366458i
\(130\) 0 0
\(131\) 6.32213 + 6.32213i 0.552367 + 0.552367i 0.927123 0.374756i \(-0.122274\pi\)
−0.374756 + 0.927123i \(0.622274\pi\)
\(132\) 0 0
\(133\) 10.1249 + 10.1249i 0.877944 + 0.877944i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1.17700 −0.100558 −0.0502788 0.998735i \(-0.516011\pi\)
−0.0502788 + 0.998735i \(0.516011\pi\)
\(138\) 0 0
\(139\) −15.9211 15.9211i −1.35041 1.35041i −0.885199 0.465213i \(-0.845978\pi\)
−0.465213 0.885199i \(-0.654022\pi\)
\(140\) 0 0
\(141\) 3.49719 + 3.49719i 0.294516 + 0.294516i
\(142\) 0 0
\(143\) 0.960161 0.960161i 0.0802927 0.0802927i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −1.46860 + 1.46860i −0.121128 + 0.121128i
\(148\) 0 0
\(149\) 11.0596 0.906041 0.453020 0.891500i \(-0.350346\pi\)
0.453020 + 0.891500i \(0.350346\pi\)
\(150\) 0 0
\(151\) 10.7888i 0.877983i −0.898491 0.438991i \(-0.855336\pi\)
0.898491 0.438991i \(-0.144664\pi\)
\(152\) 0 0
\(153\) −5.81777 + 3.66392i −0.470339 + 0.296210i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0.512300 0.0408860 0.0204430 0.999791i \(-0.493492\pi\)
0.0204430 + 0.999791i \(0.493492\pi\)
\(158\) 0 0
\(159\) −10.2386 + 10.2386i −0.811973 + 0.811973i
\(160\) 0 0
\(161\) 2.36520i 0.186404i
\(162\) 0 0
\(163\) −2.48022 + 2.48022i −0.194266 + 0.194266i −0.797537 0.603271i \(-0.793864\pi\)
0.603271 + 0.797537i \(0.293864\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.02501 + 2.02501i 0.156700 + 0.156700i 0.781103 0.624403i \(-0.214658\pi\)
−0.624403 + 0.781103i \(0.714658\pi\)
\(168\) 0 0
\(169\) −0.0326878 −0.00251445
\(170\) 0 0
\(171\) −10.4700 −0.800660
\(172\) 0 0
\(173\) −1.49153 1.49153i −0.113399 0.113399i 0.648130 0.761529i \(-0.275551\pi\)
−0.761529 + 0.648130i \(0.775551\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 10.3768 10.3768i 0.779967 0.779967i
\(178\) 0 0
\(179\) 2.32437i 0.173732i 0.996220 + 0.0868658i \(0.0276851\pi\)
−0.996220 + 0.0868658i \(0.972315\pi\)
\(180\) 0 0
\(181\) −0.640639 + 0.640639i −0.0476183 + 0.0476183i −0.730515 0.682897i \(-0.760720\pi\)
0.682897 + 0.730515i \(0.260720\pi\)
\(182\) 0 0
\(183\) −2.18885 −0.161804
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 1.51612 + 0.344400i 0.110869 + 0.0251850i
\(188\) 0 0
\(189\) 12.2871i 0.893756i
\(190\) 0 0
\(191\) −22.4809 −1.62666 −0.813330 0.581802i \(-0.802348\pi\)
−0.813330 + 0.581802i \(0.802348\pi\)
\(192\) 0 0
\(193\) −5.64538 + 5.64538i −0.406363 + 0.406363i −0.880468 0.474105i \(-0.842772\pi\)
0.474105 + 0.880468i \(0.342772\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 7.52513 7.52513i 0.536143 0.536143i −0.386251 0.922394i \(-0.626230\pi\)
0.922394 + 0.386251i \(0.126230\pi\)
\(198\) 0 0
\(199\) 0.360058 + 0.360058i 0.0255238 + 0.0255238i 0.719754 0.694230i \(-0.244255\pi\)
−0.694230 + 0.719754i \(0.744255\pi\)
\(200\) 0 0
\(201\) −1.34082 1.34082i −0.0945742 0.0945742i
\(202\) 0 0
\(203\) 9.09923 0.638641
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 1.22290 + 1.22290i 0.0849975 + 0.0849975i
\(208\) 0 0
\(209\) 1.67414 + 1.67414i 0.115803 + 0.115803i
\(210\) 0 0
\(211\) 17.2509 17.2509i 1.18760 1.18760i 0.209872 0.977729i \(-0.432695\pi\)
0.977729 0.209872i \(-0.0673047\pi\)
\(212\) 0 0
\(213\) 10.2251i 0.700615i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −5.75617 −0.390754
\(218\) 0 0
\(219\) 7.48987i 0.506119i
\(220\) 0 0
\(221\) 7.91223 + 12.5635i 0.532234 + 0.845111i
\(222\) 0 0
\(223\) 1.50211i 0.100589i 0.998734 + 0.0502944i \(0.0160160\pi\)
−0.998734 + 0.0502944i \(0.983984\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −8.30160 + 8.30160i −0.550996 + 0.550996i −0.926728 0.375732i \(-0.877391\pi\)
0.375732 + 0.926728i \(0.377391\pi\)
\(228\) 0 0
\(229\) 14.6217i 0.966227i 0.875558 + 0.483113i \(0.160494\pi\)
−0.875558 + 0.483113i \(0.839506\pi\)
\(230\) 0 0
\(231\) 0.701911 0.701911i 0.0461824 0.0461824i
\(232\) 0 0
\(233\) −13.1202 13.1202i −0.859533 0.859533i 0.131750 0.991283i \(-0.457940\pi\)
−0.991283 + 0.131750i \(0.957940\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 5.30908 0.344862
\(238\) 0 0
\(239\) −15.7493 −1.01874 −0.509370 0.860548i \(-0.670121\pi\)
−0.509370 + 0.860548i \(0.670121\pi\)
\(240\) 0 0
\(241\) 13.1072 + 13.1072i 0.844312 + 0.844312i 0.989416 0.145104i \(-0.0463518\pi\)
−0.145104 + 0.989416i \(0.546352\pi\)
\(242\) 0 0
\(243\) −10.4362 10.4362i −0.669482 0.669482i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 22.6099i 1.43863i
\(248\) 0 0
\(249\) −5.08991 + 5.08991i −0.322560 + 0.322560i
\(250\) 0 0
\(251\) −10.0712 −0.635688 −0.317844 0.948143i \(-0.602959\pi\)
−0.317844 + 0.948143i \(0.602959\pi\)
\(252\) 0 0
\(253\) 0.391083i 0.0245872i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 6.55870i 0.409121i −0.978854 0.204560i \(-0.934424\pi\)
0.978854 0.204560i \(-0.0655764\pi\)
\(258\) 0 0
\(259\) 16.3887 1.01834
\(260\) 0 0
\(261\) −4.70466 + 4.70466i −0.291211 + 0.291211i
\(262\) 0 0
\(263\) 18.2703i 1.12660i −0.826254 0.563298i \(-0.809532\pi\)
0.826254 0.563298i \(-0.190468\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −5.20300 5.20300i −0.318418 0.318418i
\(268\) 0 0
\(269\) 0.684858 + 0.684858i 0.0417565 + 0.0417565i 0.727677 0.685920i \(-0.240600\pi\)
−0.685920 + 0.727677i \(0.740600\pi\)
\(270\) 0 0
\(271\) 29.6803 1.80295 0.901474 0.432833i \(-0.142486\pi\)
0.901474 + 0.432833i \(0.142486\pi\)
\(272\) 0 0
\(273\) 9.47956 0.573729
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −15.9208 15.9208i −0.956587 0.956587i 0.0425090 0.999096i \(-0.486465\pi\)
−0.999096 + 0.0425090i \(0.986465\pi\)
\(278\) 0 0
\(279\) 2.97617 2.97617i 0.178178 0.178178i
\(280\) 0 0
\(281\) 22.6112i 1.34887i 0.738334 + 0.674435i \(0.235613\pi\)
−0.738334 + 0.674435i \(0.764387\pi\)
\(282\) 0 0
\(283\) 17.5527 17.5527i 1.04340 1.04340i 0.0443860 0.999014i \(-0.485867\pi\)
0.999014 0.0443860i \(-0.0141331\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 15.1704i 0.895478i
\(288\) 0 0
\(289\) −7.34442 + 15.3316i −0.432025 + 0.901862i
\(290\) 0 0
\(291\) 17.7289i 1.03929i
\(292\) 0 0
\(293\) 1.77021 0.103417 0.0517083 0.998662i \(-0.483533\pi\)
0.0517083 + 0.998662i \(0.483533\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 2.03166i 0.117889i
\(298\) 0 0
\(299\) 2.64085 2.64085i 0.152725 0.152725i
\(300\) 0 0
\(301\) 8.22287 + 8.22287i 0.473958 + 0.473958i
\(302\) 0 0
\(303\) −11.1939 11.1939i −0.643072 0.643072i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 13.9310 0.795083 0.397541 0.917584i \(-0.369864\pi\)
0.397541 + 0.917584i \(0.369864\pi\)
\(308\) 0 0
\(309\) −3.10023 3.10023i −0.176366 0.176366i
\(310\) 0 0
\(311\) 11.0907 + 11.0907i 0.628897 + 0.628897i 0.947791 0.318893i \(-0.103311\pi\)
−0.318893 + 0.947791i \(0.603311\pi\)
\(312\) 0 0
\(313\) 15.6881 15.6881i 0.886746 0.886746i −0.107463 0.994209i \(-0.534273\pi\)
0.994209 + 0.107463i \(0.0342726\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −8.47602 + 8.47602i −0.476061 + 0.476061i −0.903869 0.427809i \(-0.859286\pi\)
0.427809 + 0.903869i \(0.359286\pi\)
\(318\) 0 0
\(319\) 1.50455 0.0842384
\(320\) 0 0
\(321\) 4.16802i 0.232636i
\(322\) 0 0
\(323\) −21.9058 + 13.7958i −1.21887 + 0.767621i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 18.5112 1.02367
\(328\) 0 0
\(329\) −6.90911 + 6.90911i −0.380912 + 0.380912i
\(330\) 0 0
\(331\) 10.7049i 0.588394i 0.955745 + 0.294197i \(0.0950521\pi\)
−0.955745 + 0.294197i \(0.904948\pi\)
\(332\) 0 0
\(333\) −8.47359 + 8.47359i −0.464350 + 0.464350i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 7.41211 + 7.41211i 0.403763 + 0.403763i 0.879557 0.475794i \(-0.157839\pi\)
−0.475794 + 0.879557i \(0.657839\pi\)
\(338\) 0 0
\(339\) 2.98855 0.162316
\(340\) 0 0
\(341\) −0.951774 −0.0515415
\(342\) 0 0
\(343\) −14.1894 14.1894i −0.766155 0.766155i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −12.1775 + 12.1775i −0.653722 + 0.653722i −0.953887 0.300165i \(-0.902958\pi\)
0.300165 + 0.953887i \(0.402958\pi\)
\(348\) 0 0
\(349\) 14.3753i 0.769492i 0.923022 + 0.384746i \(0.125711\pi\)
−0.923022 + 0.384746i \(0.874289\pi\)
\(350\) 0 0
\(351\) −13.7191 + 13.7191i −0.732272 + 0.732272i
\(352\) 0 0
\(353\) −32.8821 −1.75014 −0.875069 0.483999i \(-0.839184\pi\)
−0.875069 + 0.483999i \(0.839184\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 5.78412 + 9.18434i 0.306128 + 0.486087i
\(358\) 0 0
\(359\) 16.1610i 0.852944i 0.904501 + 0.426472i \(0.140244\pi\)
−0.904501 + 0.426472i \(0.859756\pi\)
\(360\) 0 0
\(361\) −20.4229 −1.07489
\(362\) 0 0
\(363\) −8.86252 + 8.86252i −0.465161 + 0.465161i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −18.2469 + 18.2469i −0.952478 + 0.952478i −0.998921 0.0464430i \(-0.985211\pi\)
0.0464430 + 0.998921i \(0.485211\pi\)
\(368\) 0 0
\(369\) −7.84367 7.84367i −0.408325 0.408325i
\(370\) 0 0
\(371\) −20.2276 20.2276i −1.05016 1.05016i
\(372\) 0 0
\(373\) 32.7051 1.69340 0.846702 0.532067i \(-0.178585\pi\)
0.846702 + 0.532067i \(0.178585\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 10.1597 + 10.1597i 0.523252 + 0.523252i
\(378\) 0 0
\(379\) 11.8849 + 11.8849i 0.610486 + 0.610486i 0.943073 0.332587i \(-0.107922\pi\)
−0.332587 + 0.943073i \(0.607922\pi\)
\(380\) 0 0
\(381\) −6.64158 + 6.64158i −0.340259 + 0.340259i
\(382\) 0 0
\(383\) 28.8458i 1.47395i −0.675920 0.736975i \(-0.736253\pi\)
0.675920 0.736975i \(-0.263747\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −8.50309 −0.432236
\(388\) 0 0
\(389\) 21.2797i 1.07892i 0.842011 + 0.539461i \(0.181372\pi\)
−0.842011 + 0.539461i \(0.818628\pi\)
\(390\) 0 0
\(391\) 4.16997 + 0.947247i 0.210885 + 0.0479044i
\(392\) 0 0
\(393\) 10.3207i 0.520609i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −21.6953 + 21.6953i −1.08886 + 1.08886i −0.0932105 + 0.995646i \(0.529713\pi\)
−0.995646 + 0.0932105i \(0.970287\pi\)
\(398\) 0 0
\(399\) 16.5286i 0.827467i
\(400\) 0 0
\(401\) −11.5961 + 11.5961i −0.579083 + 0.579083i −0.934650 0.355568i \(-0.884287\pi\)
0.355568 + 0.934650i \(0.384287\pi\)
\(402\) 0 0
\(403\) −6.42703 6.42703i −0.320153 0.320153i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.70984 0.134322
\(408\) 0 0
\(409\) 17.9990 0.889991 0.444995 0.895533i \(-0.353205\pi\)
0.444995 + 0.895533i \(0.353205\pi\)
\(410\) 0 0
\(411\) −0.960704 0.960704i −0.0473880 0.0473880i
\(412\) 0 0
\(413\) 20.5006 + 20.5006i 1.00877 + 1.00877i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 25.9907i 1.27277i
\(418\) 0 0
\(419\) 9.67880 9.67880i 0.472840 0.472840i −0.429992 0.902833i \(-0.641484\pi\)
0.902833 + 0.429992i \(0.141484\pi\)
\(420\) 0 0
\(421\) 23.1730 1.12938 0.564691 0.825302i \(-0.308995\pi\)
0.564691 + 0.825302i \(0.308995\pi\)
\(422\) 0 0
\(423\) 7.14457i 0.347381i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 4.32433i 0.209269i
\(428\) 0 0
\(429\) 1.56743 0.0756763
\(430\) 0 0
\(431\) 10.6226 10.6226i 0.511672 0.511672i −0.403367 0.915038i \(-0.632160\pi\)
0.915038 + 0.403367i \(0.132160\pi\)
\(432\) 0 0
\(433\) 3.81820i 0.183491i −0.995782 0.0917456i \(-0.970755\pi\)
0.995782 0.0917456i \(-0.0292446\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4.60462 + 4.60462i 0.220269 + 0.220269i
\(438\) 0 0
\(439\) 21.4033 + 21.4033i 1.02153 + 1.02153i 0.999763 + 0.0217625i \(0.00692776\pi\)
0.0217625 + 0.999763i \(0.493072\pi\)
\(440\) 0 0
\(441\) 3.00028 0.142870
\(442\) 0 0
\(443\) −23.0057 −1.09303 −0.546517 0.837448i \(-0.684047\pi\)
−0.546517 + 0.837448i \(0.684047\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 9.02725 + 9.02725i 0.426974 + 0.426974i
\(448\) 0 0
\(449\) −20.5309 + 20.5309i −0.968912 + 0.968912i −0.999531 0.0306189i \(-0.990252\pi\)
0.0306189 + 0.999531i \(0.490252\pi\)
\(450\) 0 0
\(451\) 2.50840i 0.118116i
\(452\) 0 0
\(453\) 8.80621 8.80621i 0.413752 0.413752i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 29.0219i 1.35759i 0.734329 + 0.678794i \(0.237497\pi\)
−0.734329 + 0.678794i \(0.762503\pi\)
\(458\) 0 0
\(459\) −21.6628 4.92091i −1.01113 0.229688i
\(460\) 0 0
\(461\) 19.2857i 0.898226i 0.893475 + 0.449113i \(0.148260\pi\)
−0.893475 + 0.449113i \(0.851740\pi\)
\(462\) 0 0
\(463\) 25.9058 1.20394 0.601972 0.798517i \(-0.294382\pi\)
0.601972 + 0.798517i \(0.294382\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 19.3658i 0.896144i −0.893997 0.448072i \(-0.852111\pi\)
0.893997 0.448072i \(-0.147889\pi\)
\(468\) 0 0
\(469\) 2.64895 2.64895i 0.122317 0.122317i
\(470\) 0 0
\(471\) 0.418156 + 0.418156i 0.0192676 + 0.0192676i
\(472\) 0 0
\(473\) 1.35964 + 1.35964i 0.0625163 + 0.0625163i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 20.9169 0.957720
\(478\) 0 0
\(479\) −3.36973 3.36973i −0.153967 0.153967i 0.625920 0.779887i \(-0.284724\pi\)
−0.779887 + 0.625920i \(0.784724\pi\)
\(480\) 0 0
\(481\) 18.2987 + 18.2987i 0.834349 + 0.834349i
\(482\) 0 0
\(483\) 1.93056 1.93056i 0.0878434 0.0878434i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 4.87583 4.87583i 0.220945 0.220945i −0.587951 0.808896i \(-0.700065\pi\)
0.808896 + 0.587951i \(0.200065\pi\)
\(488\) 0 0
\(489\) −4.04888 −0.183097
\(490\) 0 0
\(491\) 35.3825i 1.59679i −0.602135 0.798394i \(-0.705683\pi\)
0.602135 0.798394i \(-0.294317\pi\)
\(492\) 0 0
\(493\) −3.64418 + 16.0424i −0.164126 + 0.722515i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 20.2010 0.906139
\(498\) 0 0
\(499\) 0.0682505 0.0682505i 0.00305531 0.00305531i −0.705577 0.708633i \(-0.749312\pi\)
0.708633 + 0.705577i \(0.249312\pi\)
\(500\) 0 0
\(501\) 3.30577i 0.147691i
\(502\) 0 0
\(503\) 31.1989 31.1989i 1.39109 1.39109i 0.568205 0.822887i \(-0.307638\pi\)
0.822887 0.568205i \(-0.192362\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −0.0266809 0.0266809i −0.00118494 0.00118494i
\(508\) 0 0
\(509\) 7.67923 0.340376 0.170188 0.985412i \(-0.445563\pi\)
0.170188 + 0.985412i \(0.445563\pi\)
\(510\) 0 0
\(511\) −14.7971 −0.654587
\(512\) 0 0
\(513\) −23.9208 23.9208i −1.05613 1.05613i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −1.14241 + 1.14241i −0.0502432 + 0.0502432i
\(518\) 0 0
\(519\) 2.43488i 0.106879i
\(520\) 0 0
\(521\) 13.3081 13.3081i 0.583038 0.583038i −0.352699 0.935737i \(-0.614736\pi\)
0.935737 + 0.352699i \(0.114736\pi\)
\(522\) 0 0
\(523\) 39.0256 1.70647 0.853235 0.521527i \(-0.174637\pi\)
0.853235 + 0.521527i \(0.174637\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.30531 10.1484i 0.100421 0.442073i
\(528\) 0 0
\(529\) 21.9244i 0.953233i
\(530\) 0 0
\(531\) −21.1992 −0.919969
\(532\) 0 0
\(533\) −16.9384 + 16.9384i −0.733684 + 0.733684i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −1.89723 + 1.89723i −0.0818716 + 0.0818716i
\(538\) 0 0
\(539\) −0.479742 0.479742i −0.0206640 0.0206640i
\(540\) 0 0
\(541\) −7.61871 7.61871i −0.327554 0.327554i 0.524102 0.851656i \(-0.324401\pi\)
−0.851656 + 0.524102i \(0.824401\pi\)
\(542\) 0 0
\(543\) −1.04582 −0.0448806
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −5.03846 5.03846i −0.215429 0.215429i 0.591140 0.806569i \(-0.298678\pi\)
−0.806569 + 0.591140i \(0.798678\pi\)
\(548\) 0 0
\(549\) 2.23585 + 2.23585i 0.0954238 + 0.0954238i
\(550\) 0 0
\(551\) −17.7146 + 17.7146i −0.754666 + 0.754666i
\(552\) 0 0
\(553\) 10.4887i 0.446026i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 24.0436 1.01876 0.509379 0.860542i \(-0.329875\pi\)
0.509379 + 0.860542i \(0.329875\pi\)
\(558\) 0 0
\(559\) 18.3624i 0.776647i
\(560\) 0 0
\(561\) 0.956396 + 1.51862i 0.0403791 + 0.0641161i
\(562\) 0 0
\(563\) 18.2858i 0.770656i 0.922780 + 0.385328i \(0.125912\pi\)
−0.922780 + 0.385328i \(0.874088\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −1.96216 + 1.96216i −0.0824031 + 0.0824031i
\(568\) 0 0
\(569\) 30.0101i 1.25809i −0.777369 0.629045i \(-0.783446\pi\)
0.777369 0.629045i \(-0.216554\pi\)
\(570\) 0 0
\(571\) 5.90936 5.90936i 0.247299 0.247299i −0.572562 0.819861i \(-0.694050\pi\)
0.819861 + 0.572562i \(0.194050\pi\)
\(572\) 0 0
\(573\) −18.3497 18.3497i −0.766569 0.766569i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −25.2147 −1.04970 −0.524851 0.851194i \(-0.675879\pi\)
−0.524851 + 0.851194i \(0.675879\pi\)
\(578\) 0 0
\(579\) −9.21591 −0.383000
\(580\) 0 0
\(581\) −10.0557 10.0557i −0.417183 0.417183i
\(582\) 0 0
\(583\) −3.34460 3.34460i −0.138519 0.138519i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 4.21200i 0.173848i 0.996215 + 0.0869240i \(0.0277037\pi\)
−0.996215 + 0.0869240i \(0.972296\pi\)
\(588\) 0 0
\(589\) 11.2062 11.2062i 0.461744 0.461744i
\(590\) 0 0
\(591\) 12.2845 0.505318
\(592\) 0 0
\(593\) 45.2887i 1.85979i 0.367831 + 0.929893i \(0.380101\pi\)
−0.367831 + 0.929893i \(0.619899\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0.587784i 0.0240564i
\(598\) 0 0
\(599\) 14.8532 0.606884 0.303442 0.952850i \(-0.401864\pi\)
0.303442 + 0.952850i \(0.401864\pi\)
\(600\) 0 0
\(601\) 20.1364 20.1364i 0.821380 0.821380i −0.164926 0.986306i \(-0.552739\pi\)
0.986306 + 0.164926i \(0.0527386\pi\)
\(602\) 0 0
\(603\) 2.73923i 0.111550i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −6.62836 6.62836i −0.269037 0.269037i 0.559675 0.828712i \(-0.310926\pi\)
−0.828712 + 0.559675i \(0.810926\pi\)
\(608\) 0 0
\(609\) 7.42710 + 7.42710i 0.300961 + 0.300961i
\(610\) 0 0
\(611\) −15.4287 −0.624178
\(612\) 0 0
\(613\) 8.34020 0.336858 0.168429 0.985714i \(-0.446131\pi\)
0.168429 + 0.985714i \(0.446131\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −14.1428 14.1428i −0.569366 0.569366i 0.362584 0.931951i \(-0.381894\pi\)
−0.931951 + 0.362584i \(0.881894\pi\)
\(618\) 0 0
\(619\) 22.6764 22.6764i 0.911443 0.911443i −0.0849425 0.996386i \(-0.527071\pi\)
0.996386 + 0.0849425i \(0.0270706\pi\)
\(620\) 0 0
\(621\) 5.58793i 0.224236i
\(622\) 0 0
\(623\) 10.2791 10.2791i 0.411825 0.411825i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 2.73299i 0.109145i
\(628\) 0 0
\(629\) −6.56356 + 28.8941i −0.261706 + 1.15208i
\(630\) 0 0
\(631\) 6.82832i 0.271831i −0.990720 0.135916i \(-0.956602\pi\)
0.990720 0.135916i \(-0.0433976\pi\)
\(632\) 0 0
\(633\) 28.1615 1.11932
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 6.47909i 0.256711i
\(638\) 0 0
\(639\) −10.4447 + 10.4447i −0.413186 + 0.413186i
\(640\) 0 0
\(641\) 32.6491 + 32.6491i 1.28956 + 1.28956i 0.935053 + 0.354508i \(0.115352\pi\)
0.354508 + 0.935053i \(0.384648\pi\)
\(642\) 0 0
\(643\) 8.88296 + 8.88296i 0.350310 + 0.350310i 0.860225 0.509915i \(-0.170323\pi\)
−0.509915 + 0.860225i \(0.670323\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −14.6477 −0.575860 −0.287930 0.957651i \(-0.592967\pi\)
−0.287930 + 0.957651i \(0.592967\pi\)
\(648\) 0 0
\(649\) 3.38975 + 3.38975i 0.133059 + 0.133059i
\(650\) 0 0
\(651\) −4.69838 4.69838i −0.184144 0.184144i
\(652\) 0 0
\(653\) −7.51545 + 7.51545i −0.294102 + 0.294102i −0.838698 0.544596i \(-0.816683\pi\)
0.544596 + 0.838698i \(0.316683\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 7.65071 7.65071i 0.298483 0.298483i
\(658\) 0 0
\(659\) −28.9747 −1.12870 −0.564348 0.825537i \(-0.690872\pi\)
−0.564348 + 0.825537i \(0.690872\pi\)
\(660\) 0 0
\(661\) 35.4711i 1.37966i −0.723969 0.689832i \(-0.757684\pi\)
0.723969 0.689832i \(-0.242316\pi\)
\(662\) 0 0
\(663\) −3.79650 + 16.7130i −0.147444 + 0.649078i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 4.13815 0.160230
\(668\) 0 0
\(669\) −1.22608 + 1.22608i −0.0474028 + 0.0474028i
\(670\) 0 0
\(671\) 0.715023i 0.0276031i
\(672\) 0 0
\(673\) 15.7165 15.7165i 0.605828 0.605828i −0.336025 0.941853i \(-0.609083\pi\)
0.941853 + 0.336025i \(0.109083\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 29.5308 + 29.5308i 1.13496 + 1.13496i 0.989340 + 0.145621i \(0.0465180\pi\)
0.145621 + 0.989340i \(0.453482\pi\)
\(678\) 0 0
\(679\) 35.0256 1.34416
\(680\) 0 0
\(681\) −13.5521 −0.519317
\(682\) 0 0
\(683\) −5.14596 5.14596i −0.196905 0.196905i 0.601767 0.798672i \(-0.294464\pi\)
−0.798672 + 0.601767i \(0.794464\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −11.9347 + 11.9347i −0.455337 + 0.455337i
\(688\) 0 0
\(689\) 45.1701i 1.72084i
\(690\) 0 0
\(691\) 14.4178 14.4178i 0.548479 0.548479i −0.377522 0.926001i \(-0.623224\pi\)
0.926001 + 0.377522i \(0.123224\pi\)
\(692\) 0 0
\(693\) −1.43397 −0.0544719
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −26.7462 6.07563i −1.01308 0.230131i
\(698\) 0 0
\(699\) 21.4183i 0.810115i
\(700\) 0 0
\(701\) −26.7058 −1.00866 −0.504332 0.863510i \(-0.668261\pi\)
−0.504332 + 0.863510i \(0.668261\pi\)
\(702\) 0 0
\(703\) −31.9058 + 31.9058i −1.20335 + 1.20335i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 22.1149 22.1149i 0.831716 0.831716i
\(708\) 0 0
\(709\) −35.9994 35.9994i −1.35198 1.35198i −0.883439 0.468546i \(-0.844778\pi\)
−0.468546 0.883439i \(-0.655222\pi\)
\(710\) 0 0
\(711\) −5.42308 5.42308i −0.203381 0.203381i
\(712\) 0 0
\(713\) −2.61779 −0.0980369
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −12.8551 12.8551i −0.480084 0.480084i
\(718\) 0 0
\(719\) 7.06826 + 7.06826i 0.263602 + 0.263602i 0.826515 0.562914i \(-0.190320\pi\)
−0.562914 + 0.826515i \(0.690320\pi\)
\(720\) 0 0
\(721\) 6.12487 6.12487i 0.228102 0.228102i
\(722\) 0 0
\(723\) 21.3972i 0.795769i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −17.8024 −0.660254 −0.330127 0.943936i \(-0.607092\pi\)
−0.330127 + 0.943936i \(0.607092\pi\)
\(728\) 0 0
\(729\) 20.6871i 0.766190i
\(730\) 0 0
\(731\) −17.7906 + 11.2041i −0.658008 + 0.414400i
\(732\) 0 0
\(733\) 28.6002i 1.05637i 0.849128 + 0.528186i \(0.177128\pi\)
−0.849128 + 0.528186i \(0.822872\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0.438001 0.438001i 0.0161340 0.0161340i
\(738\) 0 0
\(739\) 36.9400i 1.35886i −0.733741 0.679430i \(-0.762227\pi\)
0.733741 0.679430i \(-0.237773\pi\)
\(740\) 0 0
\(741\) −18.4550 + 18.4550i −0.677961 + 0.677961i
\(742\) 0 0
\(743\) −32.9181 32.9181i −1.20765 1.20765i −0.971787 0.235861i \(-0.924209\pi\)
−0.235861 0.971787i \(-0.575791\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 10.3984 0.380459
\(748\) 0 0
\(749\) −8.23443 −0.300879
\(750\) 0 0
\(751\) 19.6807 + 19.6807i 0.718160 + 0.718160i 0.968228 0.250069i \(-0.0804532\pi\)
−0.250069 + 0.968228i \(0.580453\pi\)
\(752\) 0 0
\(753\) −8.22046 8.22046i −0.299570 0.299570i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 40.6172i 1.47626i −0.674660 0.738129i \(-0.735710\pi\)
0.674660 0.738129i \(-0.264290\pi\)
\(758\) 0 0
\(759\) 0.319215 0.319215i 0.0115868 0.0115868i
\(760\) 0 0
\(761\) −16.8521 −0.610887 −0.305443 0.952210i \(-0.598805\pi\)
−0.305443 + 0.952210i \(0.598805\pi\)
\(762\) 0 0
\(763\) 36.5710i 1.32396i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 45.7797i 1.65301i
\(768\) 0 0
\(769\) 4.42825 0.159687 0.0798433 0.996807i \(-0.474558\pi\)
0.0798433 + 0.996807i \(0.474558\pi\)
\(770\) 0 0
\(771\) 5.35344 5.35344i 0.192799 0.192799i
\(772\) 0 0
\(773\) 28.4828i 1.02446i −0.858850 0.512228i \(-0.828820\pi\)
0.858850 0.512228i \(-0.171180\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 13.3770 + 13.3770i 0.479897 + 0.479897i
\(778\) 0 0
\(779\) −29.5339 29.5339i −1.05816 1.05816i
\(780\) 0 0
\(781\) 3.34021 0.119522
\(782\) 0 0
\(783\) −21.4975 −0.768257
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −7.20267 7.20267i −0.256747 0.256747i 0.566982 0.823730i \(-0.308111\pi\)
−0.823730 + 0.566982i \(0.808111\pi\)
\(788\) 0 0
\(789\) 14.9129 14.9129i 0.530912 0.530912i
\(790\) 0 0
\(791\) 5.90424i 0.209931i
\(792\) 0 0
\(793\) 4.82832 4.82832i 0.171459 0.171459i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 43.8770i 1.55420i −0.629375 0.777102i \(-0.716689\pi\)
0.629375 0.777102i \(-0.283311\pi\)
\(798\) 0 0
\(799\) −9.41408 14.9482i −0.333046 0.528829i
\(800\) 0 0
\(801\) 10.6295i 0.375573i
\(802\) 0 0
\(803\) −2.44669 −0.0863417
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.11801i 0.0393558i
\(808\) 0 0
\(809\) 6.67006 6.67006i 0.234507 0.234507i −0.580064 0.814571i \(-0.696972\pi\)
0.814571 + 0.580064i \(0.196972\pi\)
\(810\) 0 0
\(811\) 28.1387 + 28.1387i 0.988082 + 0.988082i 0.999930 0.0118476i \(-0.00377129\pi\)
−0.0118476 + 0.999930i \(0.503771\pi\)
\(812\) 0 0
\(813\) 24.2261 + 24.2261i 0.849645 + 0.849645i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −32.0169 −1.12013
\(818\) 0 0
\(819\) −9.68312 9.68312i −0.338356 0.338356i
\(820\) 0 0
\(821\) −13.6305 13.6305i −0.475706 0.475706i 0.428049 0.903756i \(-0.359201\pi\)
−0.903756 + 0.428049i \(0.859201\pi\)
\(822\) 0 0
\(823\) 25.6787 25.6787i 0.895104 0.895104i −0.0998945 0.994998i \(-0.531851\pi\)
0.994998 + 0.0998945i \(0.0318505\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 36.2622 36.2622i 1.26096 1.26096i 0.310333 0.950628i \(-0.399560\pi\)
0.950628 0.310333i \(-0.100440\pi\)
\(828\) 0 0
\(829\) −16.3954 −0.569436 −0.284718 0.958611i \(-0.591900\pi\)
−0.284718 + 0.958611i \(0.591900\pi\)
\(830\) 0 0
\(831\) 25.9902i 0.901589i
\(832\) 0 0
\(833\) 6.27731 3.95333i 0.217496 0.136975i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 13.5993 0.470060
\(838\) 0 0
\(839\) −36.4895 + 36.4895i −1.25976 + 1.25976i −0.308549 + 0.951208i \(0.599844\pi\)
−0.951208 + 0.308549i \(0.900156\pi\)
\(840\) 0 0
\(841\) 13.0800i 0.451035i
\(842\) 0 0
\(843\) −18.4560 + 18.4560i −0.635659 + 0.635659i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −17.5090 17.5090i −0.601615 0.601615i
\(848\) 0 0
\(849\) 28.6542 0.983411
\(850\) 0 0
\(851\) 7.45324 0.255494
\(852\) 0 0
\(853\) −31.1948 31.1948i −1.06809 1.06809i −0.997506 0.0705838i \(-0.977514\pi\)
−0.0705838 0.997506i \(-0.522486\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −12.4997 + 12.4997i −0.426982 + 0.426982i −0.887599 0.460617i \(-0.847628\pi\)
0.460617 + 0.887599i \(0.347628\pi\)
\(858\) 0 0
\(859\) 55.5538i 1.89547i −0.319058 0.947735i \(-0.603366\pi\)
0.319058 0.947735i \(-0.396634\pi\)
\(860\) 0 0
\(861\) −12.3826 + 12.3826i −0.421997 + 0.421997i
\(862\) 0 0
\(863\) −16.8178 −0.572485 −0.286242 0.958157i \(-0.592406\pi\)
−0.286242 + 0.958157i \(0.592406\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −18.5090 + 6.51945i −0.628598 + 0.221412i
\(868\) 0 0
\(869\) 1.73430i 0.0588320i
\(870\) 0 0
\(871\) 5.91536 0.200434
\(872\) 0 0
\(873\) −18.1096 + 18.1096i −0.612917 + 0.612917i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 26.4783 26.4783i 0.894110 0.894110i −0.100797 0.994907i \(-0.532139\pi\)
0.994907 + 0.100797i \(0.0321392\pi\)
\(878\) 0 0
\(879\) 1.44490 + 1.44490i 0.0487354 + 0.0487354i
\(880\) 0 0
\(881\) −18.4141 18.4141i −0.620388 0.620388i 0.325243 0.945631i \(-0.394554\pi\)
−0.945631 + 0.325243i \(0.894554\pi\)
\(882\) 0 0
\(883\) 24.2331 0.815509 0.407754 0.913092i \(-0.366312\pi\)
0.407754 + 0.913092i \(0.366312\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −26.4698 26.4698i −0.888770 0.888770i 0.105635 0.994405i \(-0.466313\pi\)
−0.994405 + 0.105635i \(0.966313\pi\)
\(888\) 0 0
\(889\) −13.1212 13.1212i −0.440073 0.440073i
\(890\) 0 0
\(891\) −0.324441 + 0.324441i −0.0108692 + 0.0108692i
\(892\) 0 0
\(893\) 26.9016i 0.900227i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 4.31111 0.143944
\(898\) 0 0
\(899\) 10.0710i 0.335886i
\(900\) 0 0
\(901\) 43.7633 27.5613i 1.45797 0.918200i
\(902\) 0 0
\(903\) 13.4236i 0.446708i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 22.3536 22.3536i 0.742240 0.742240i −0.230768 0.973009i \(-0.574124\pi\)
0.973009 + 0.230768i \(0.0741239\pi\)
\(908\) 0 0
\(909\) 22.8685i 0.758502i
\(910\) 0 0
\(911\) 12.3031 12.3031i 0.407621 0.407621i −0.473287 0.880908i \(-0.656933\pi\)
0.880908 + 0.473287i \(0.156933\pi\)
\(912\) 0 0
\(913\) −1.66270 1.66270i −0.0550274 0.0550274i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −20.3897 −0.673329
\(918\) 0 0
\(919\) 11.9651 0.394691 0.197345 0.980334i \(-0.436768\pi\)
0.197345 + 0.980334i \(0.436768\pi\)
\(920\) 0 0
\(921\) 11.3709 + 11.3709i 0.374685 + 0.374685i
\(922\) 0 0
\(923\) 22.5553 + 22.5553i 0.742418 + 0.742418i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 6.33360i 0.208023i
\(928\) 0 0
\(929\) 38.9758 38.9758i 1.27876 1.27876i 0.337390 0.941365i \(-0.390456\pi\)
0.941365 0.337390i \(-0.109544\pi\)
\(930\) 0 0
\(931\) 11.2970 0.370244
\(932\) 0 0
\(933\) 18.1053i 0.592739i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 2.10631i 0.0688100i 0.999408 + 0.0344050i \(0.0109536\pi\)
−0.999408 + 0.0344050i \(0.989046\pi\)
\(938\) 0 0
\(939\) 25.6104 0.835764
\(940\) 0 0
\(941\) 32.7357 32.7357i 1.06715 1.06715i 0.0695764 0.997577i \(-0.477835\pi\)
0.997577 0.0695764i \(-0.0221648\pi\)
\(942\) 0 0
\(943\) 6.89917i 0.224668i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −36.0970 36.0970i −1.17299 1.17299i −0.981492 0.191501i \(-0.938664\pi\)
−0.191501 0.981492i \(-0.561336\pi\)
\(948\) 0 0
\(949\) −16.5217 16.5217i −0.536317 0.536317i
\(950\) 0 0
\(951\) −13.8368 −0.448690
\(952\) 0 0
\(953\) −13.8488 −0.448607 −0.224303 0.974519i \(-0.572011\pi\)
−0.224303 + 0.974519i \(0.572011\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 1.22806 + 1.22806i 0.0396976 + 0.0396976i
\(958\) 0 0
\(959\) 1.89799 1.89799i 0.0612892 0.0612892i
\(960\) 0 0
\(961\) 24.6291i 0.794487i
\(962\) 0 0
\(963\) 4.25752 4.25752i 0.137197 0.137197i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 4.28463i 0.137784i −0.997624 0.0688922i \(-0.978054\pi\)
0.997624 0.0688922i \(-0.0219465\pi\)
\(968\) 0 0
\(969\) −29.1409 6.61961i −0.936140 0.212653i
\(970\) 0 0
\(971\) 19.4100i 0.622896i −0.950263 0.311448i \(-0.899186\pi\)
0.950263 0.311448i \(-0.100814\pi\)
\(972\) 0 0
\(973\) 51.3478 1.64614
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 19.7209i 0.630927i −0.948938 0.315464i \(-0.897840\pi\)
0.948938 0.315464i \(-0.102160\pi\)
\(978\) 0 0
\(979\) 1.69964 1.69964i 0.0543208 0.0543208i
\(980\) 0 0
\(981\) −18.9087 18.9087i −0.603707 0.603707i
\(982\) 0 0
\(983\) 40.7504 + 40.7504i 1.29974 + 1.29974i 0.928565 + 0.371170i \(0.121043\pi\)
0.371170 + 0.928565i \(0.378957\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −11.2789 −0.359012
\(988\) 0 0
\(989\) 3.73959 + 3.73959i 0.118912 + 0.118912i
\(990\) 0 0
\(991\) 16.9380 + 16.9380i 0.538052 + 0.538052i 0.922957 0.384904i \(-0.125765\pi\)
−0.384904 + 0.922957i \(0.625765\pi\)
\(992\) 0 0
\(993\) −8.73769 + 8.73769i −0.277282 + 0.277282i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −9.30278 + 9.30278i −0.294622 + 0.294622i −0.838903 0.544281i \(-0.816803\pi\)
0.544281 + 0.838903i \(0.316803\pi\)
\(998\) 0 0
\(999\) −38.7192 −1.22502
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1700.2.o.e.1101.5 yes 12
5.2 odd 4 1700.2.m.d.149.5 12
5.3 odd 4 1700.2.m.e.149.2 12
5.4 even 2 1700.2.o.g.1101.2 yes 12
17.4 even 4 inner 1700.2.o.e.701.5 12
85.4 even 4 1700.2.o.g.701.2 yes 12
85.38 odd 4 1700.2.m.d.1449.5 12
85.72 odd 4 1700.2.m.e.1449.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1700.2.m.d.149.5 12 5.2 odd 4
1700.2.m.d.1449.5 12 85.38 odd 4
1700.2.m.e.149.2 12 5.3 odd 4
1700.2.m.e.1449.2 12 85.72 odd 4
1700.2.o.e.701.5 12 17.4 even 4 inner
1700.2.o.e.1101.5 yes 12 1.1 even 1 trivial
1700.2.o.g.701.2 yes 12 85.4 even 4
1700.2.o.g.1101.2 yes 12 5.4 even 2