Defining parameters
| Level: | \( N \) | \(=\) | \( 1700 = 2^{2} \cdot 5^{2} \cdot 17 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1700.m (of order \(4\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 85 \) |
| Character field: | \(\Q(i)\) | ||
| Newform subspaces: | \( 6 \) | ||
| Sturm bound: | \(540\) | ||
| Trace bound: | \(3\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1700, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 576 | 56 | 520 |
| Cusp forms | 504 | 56 | 448 |
| Eisenstein series | 72 | 0 | 72 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1700, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(1700, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1700, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(170, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(340, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(425, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(850, [\chi])\)\(^{\oplus 2}\)