Properties

Label 1700.2.m
Level $1700$
Weight $2$
Character orbit 1700.m
Rep. character $\chi_{1700}(149,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $56$
Newform subspaces $6$
Sturm bound $540$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1700 = 2^{2} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1700.m (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 85 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 6 \)
Sturm bound: \(540\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1700, [\chi])\).

Total New Old
Modular forms 576 56 520
Cusp forms 504 56 448
Eisenstein series 72 0 72

Trace form

\( 56 q - 12 q^{11} - 40 q^{21} + 4 q^{29} - 24 q^{31} - 24 q^{39} + 4 q^{41} + 12 q^{51} - 24 q^{61} + 8 q^{69} + 68 q^{71} + 24 q^{79} - 56 q^{81} + 56 q^{89} + 80 q^{91} + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1700, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1700.2.m.a 1700.m 85.j $4$ $13.575$ \(\Q(i, \sqrt{13})\) None 68.2.e.a \(0\) \(-2\) \(0\) \(2\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-1+\beta _{2})q^{3}+(1-\beta _{1}+\beta _{3})q^{7}+\cdots\)
1700.2.m.b 1700.m 85.j $4$ $13.575$ \(\Q(i, \sqrt{13})\) None 68.2.e.a \(0\) \(2\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{4}]$ \(q+(1-\beta _{1}+\beta _{3})q^{3}+(-1+\beta _{2})q^{7}+\cdots\)
1700.2.m.c 1700.m 85.j $12$ $13.575$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 340.2.o.a \(0\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-1-\beta _{5}-\beta _{8}+\beta _{9})q^{3}+(-\beta _{1}+\cdots)q^{7}+\cdots\)
1700.2.m.d 1700.m 85.j $12$ $13.575$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 1700.2.o.e \(0\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{3}q^{3}+\beta _{11}q^{7}+(-\beta _{9}-\beta _{10}+\beta _{11})q^{9}+\cdots\)
1700.2.m.e 1700.m 85.j $12$ $13.575$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 1700.2.o.e \(0\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{1}q^{3}-\beta _{9}q^{7}+(\beta _{9}+\beta _{10}-\beta _{11})q^{9}+\cdots\)
1700.2.m.f 1700.m 85.j $12$ $13.575$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 340.2.o.a \(0\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(1-\beta _{5}+\beta _{7}-\beta _{10})q^{3}+(\beta _{1}+\beta _{2}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1700, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1700, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(170, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(340, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(425, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(850, [\chi])\)\(^{\oplus 2}\)