Defining parameters
Level: | \( N \) | \(=\) | \( 170 = 2 \cdot 5 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 170.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 8 \) | ||
Sturm bound: | \(108\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(170))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 86 | 16 | 70 |
Cusp forms | 78 | 16 | 62 |
Eisenstein series | 8 | 0 | 8 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | \(17\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(12\) | \(3\) | \(9\) | \(11\) | \(3\) | \(8\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(9\) | \(1\) | \(8\) | \(8\) | \(1\) | \(7\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(10\) | \(2\) | \(8\) | \(9\) | \(2\) | \(7\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(11\) | \(2\) | \(9\) | \(10\) | \(2\) | \(8\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(10\) | \(2\) | \(8\) | \(9\) | \(2\) | \(7\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(12\) | \(3\) | \(9\) | \(11\) | \(3\) | \(8\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(11\) | \(3\) | \(8\) | \(10\) | \(3\) | \(7\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(11\) | \(0\) | \(11\) | \(10\) | \(0\) | \(10\) | \(1\) | \(0\) | \(1\) | |||
Plus space | \(+\) | \(46\) | \(11\) | \(35\) | \(42\) | \(11\) | \(31\) | \(4\) | \(0\) | \(4\) | |||||
Minus space | \(-\) | \(40\) | \(5\) | \(35\) | \(36\) | \(5\) | \(31\) | \(4\) | \(0\) | \(4\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(170))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(170))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(170)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(85))\)\(^{\oplus 2}\)