Properties

Label 170.4.a
Level $170$
Weight $4$
Character orbit 170.a
Rep. character $\chi_{170}(1,\cdot)$
Character field $\Q$
Dimension $16$
Newform subspaces $8$
Sturm bound $108$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 170 = 2 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 170.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 8 \)
Sturm bound: \(108\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(170))\).

Total New Old
Modular forms 86 16 70
Cusp forms 78 16 62
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)\(17\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(12\)\(3\)\(9\)\(11\)\(3\)\(8\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(9\)\(1\)\(8\)\(8\)\(1\)\(7\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(+\)\(-\)\(10\)\(2\)\(8\)\(9\)\(2\)\(7\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(+\)\(11\)\(2\)\(9\)\(10\)\(2\)\(8\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(10\)\(2\)\(8\)\(9\)\(2\)\(7\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(+\)\(12\)\(3\)\(9\)\(11\)\(3\)\(8\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(+\)\(11\)\(3\)\(8\)\(10\)\(3\)\(7\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(11\)\(0\)\(11\)\(10\)\(0\)\(10\)\(1\)\(0\)\(1\)
Plus space\(+\)\(46\)\(11\)\(35\)\(42\)\(11\)\(31\)\(4\)\(0\)\(4\)
Minus space\(-\)\(40\)\(5\)\(35\)\(36\)\(5\)\(31\)\(4\)\(0\)\(4\)

Trace form

\( 16 q + 12 q^{3} + 64 q^{4} - 10 q^{5} - 8 q^{6} + 8 q^{7} + 172 q^{9} - 20 q^{10} - 28 q^{11} + 48 q^{12} + 200 q^{13} + 96 q^{14} + 256 q^{16} - 68 q^{17} - 112 q^{18} + 460 q^{19} - 40 q^{20} + 232 q^{21}+ \cdots + 4100 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(170))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5 17
170.4.a.a 170.a 1.a $1$ $10.030$ \(\Q\) None 170.4.a.a \(-2\) \(4\) \(-5\) \(-4\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{3}+4q^{4}-5q^{5}-8q^{6}+\cdots\)
170.4.a.b 170.a 1.a $1$ $10.030$ \(\Q\) None 170.4.a.b \(2\) \(7\) \(5\) \(-10\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+7q^{3}+4q^{4}+5q^{5}+14q^{6}+\cdots\)
170.4.a.c 170.a 1.a $2$ $10.030$ \(\Q(\sqrt{43}) \) None 170.4.a.c \(-4\) \(-6\) \(10\) \(-34\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+(-3+\beta )q^{3}+4q^{4}+5q^{5}+\cdots\)
170.4.a.d 170.a 1.a $2$ $10.030$ \(\Q(\sqrt{145}) \) None 170.4.a.d \(-4\) \(3\) \(10\) \(28\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+(1+\beta )q^{3}+4q^{4}+5q^{5}+(-2+\cdots)q^{6}+\cdots\)
170.4.a.e 170.a 1.a $2$ $10.030$ \(\Q(\sqrt{6}) \) None 170.4.a.e \(4\) \(-4\) \(-10\) \(-28\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+(-2+\beta )q^{3}+4q^{4}-5q^{5}+\cdots\)
170.4.a.f 170.a 1.a $2$ $10.030$ \(\Q(\sqrt{19}) \) None 170.4.a.f \(4\) \(2\) \(10\) \(46\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+(1+\beta )q^{3}+4q^{4}+5q^{5}+(2+\cdots)q^{6}+\cdots\)
170.4.a.g 170.a 1.a $3$ $10.030$ 3.3.701288.1 None 170.4.a.g \(-6\) \(7\) \(-15\) \(-10\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+(2+\beta _{1})q^{3}+4q^{4}-5q^{5}+\cdots\)
170.4.a.h 170.a 1.a $3$ $10.030$ 3.3.62013.1 None 170.4.a.h \(6\) \(-1\) \(-15\) \(20\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+\beta _{1}q^{3}+4q^{4}-5q^{5}+2\beta _{1}q^{6}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(170))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(170)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(85))\)\(^{\oplus 2}\)