Properties

Label 1690.2.y
Level $1690$
Weight $2$
Character orbit 1690.y
Rep. character $\chi_{1690}(61,\cdot)$
Character field $\Q(\zeta_{39})$
Dimension $1488$
Sturm bound $546$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.y (of order \(39\) and degree \(24\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 169 \)
Character field: \(\Q(\zeta_{39})\)
Sturm bound: \(546\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1690, [\chi])\).

Total New Old
Modular forms 6624 1488 5136
Cusp forms 6432 1488 4944
Eisenstein series 192 0 192

Trace form

\( 1488 q + 62 q^{4} - 8 q^{7} + 70 q^{9} - 2 q^{10} - 2 q^{11} - 100 q^{13} - 4 q^{14} + 4 q^{15} + 62 q^{16} - 4 q^{17} - 16 q^{18} + 6 q^{19} + 24 q^{21} + 48 q^{22} + 8 q^{23} - 124 q^{25} - 8 q^{26} - 24 q^{27}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1690, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1690, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1690, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(169, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(338, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(845, [\chi])\)\(^{\oplus 2}\)