Properties

Label 1680.3.em
Level $1680$
Weight $3$
Character orbit 1680.em
Rep. character $\chi_{1680}(193,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $384$
Sturm bound $1152$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1680.em (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 35 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(1152\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(1680, [\chi])\).

Total New Old
Modular forms 3168 384 2784
Cusp forms 2976 384 2592
Eisenstein series 192 0 192

Trace form

\( 384 q + 96 q^{23} + 48 q^{33} - 96 q^{35} + 64 q^{41} - 192 q^{47} + 288 q^{67} - 512 q^{71} + 224 q^{73} + 1728 q^{81} + 768 q^{83} - 384 q^{91} - 96 q^{93} - 192 q^{95} + 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(1680, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{3}^{\mathrm{old}}(1680, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(1680, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(210, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(280, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(420, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(560, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(840, [\chi])\)\(^{\oplus 2}\)