Properties

Label 1680.2.ea
Level $1680$
Weight $2$
Character orbit 1680.ea
Rep. character $\chi_{1680}(1039,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $96$
Newform subspaces $4$
Sturm bound $768$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.ea (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 140 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 4 \)
Sturm bound: \(768\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1680, [\chi])\).

Total New Old
Modular forms 816 96 720
Cusp forms 720 96 624
Eisenstein series 96 0 96

Trace form

\( 96 q + 48 q^{9} - 12 q^{25} + 24 q^{49} - 48 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1680, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1680.2.ea.a 1680.ea 140.s $16$ $13.415$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 1680.2.ea.a \(0\) \(0\) \(6\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{1}q^{3}+(1-\beta _{1}+\beta _{2}-\beta _{4}-\beta _{7}+\cdots)q^{5}+\cdots\)
1680.2.ea.b 1680.ea 140.s $16$ $13.415$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 1680.2.ea.a \(0\) \(0\) \(6\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{1}q^{3}+(1+\beta _{1}-\beta _{2}-\beta _{4}+\beta _{7}+\cdots)q^{5}+\cdots\)
1680.2.ea.c 1680.ea 140.s $32$ $13.415$ None 1680.2.ea.c \(0\) \(0\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{6}]$
1680.2.ea.d 1680.ea 140.s $32$ $13.415$ None 1680.2.ea.c \(0\) \(0\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1680, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1680, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(420, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(560, [\chi])\)\(^{\oplus 2}\)