Defining parameters
Level: | \( N \) | \(=\) | \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1680.ea (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 140 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(768\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1680, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 816 | 96 | 720 |
Cusp forms | 720 | 96 | 624 |
Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1680, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1680.2.ea.a | $16$ | $13.415$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(6\) | \(0\) | \(q+\beta _{1}q^{3}+(1-\beta _{1}+\beta _{2}-\beta _{4}-\beta _{7}+\cdots)q^{5}+\cdots\) |
1680.2.ea.b | $16$ | $13.415$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(6\) | \(0\) | \(q+\beta _{1}q^{3}+(1+\beta _{1}-\beta _{2}-\beta _{4}+\beta _{7}+\cdots)q^{5}+\cdots\) |
1680.2.ea.c | $32$ | $13.415$ | None | \(0\) | \(0\) | \(-6\) | \(0\) | ||
1680.2.ea.d | $32$ | $13.415$ | None | \(0\) | \(0\) | \(-6\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1680, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1680, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(420, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(560, [\chi])\)\(^{\oplus 2}\)