Properties

Label 1680.2.dx.h.271.3
Level $1680$
Weight $2$
Character 1680.271
Analytic conductor $13.415$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,2,Mod(31,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.dx (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,6,0,0,0,-2,0,-6,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 35 x^{10} - 120 x^{9} + 328 x^{8} - 658 x^{7} + 1045 x^{6} - 1270 x^{5} + 1183 x^{4} + \cdots + 13 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 271.3
Root \(0.500000 + 1.45168i\) of defining polynomial
Character \(\chi\) \(=\) 1680.271
Dual form 1680.2.dx.h.31.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{3} +(-0.866025 - 0.500000i) q^{5} +(2.26392 - 1.36919i) q^{7} +(-0.500000 + 0.866025i) q^{9} +(1.87494 - 1.08250i) q^{11} -0.624468i q^{13} -1.00000i q^{15} +(-0.335186 + 0.193520i) q^{17} +(-1.76076 + 3.04972i) q^{19} +(2.31771 + 1.27602i) q^{21} +(3.87150 + 2.23521i) q^{23} +(0.500000 + 0.866025i) q^{25} -1.00000 q^{27} +9.47323 q^{29} +(-4.73346 - 8.19859i) q^{31} +(1.87494 + 1.08250i) q^{33} +(-2.64520 + 0.0537914i) q^{35} +(1.85852 - 3.21904i) q^{37} +(0.540805 - 0.312234i) q^{39} -4.80729i q^{41} -8.75451i q^{43} +(0.866025 - 0.500000i) q^{45} +(0.432944 - 0.749882i) q^{47} +(3.25065 - 6.19946i) q^{49} +(-0.335186 - 0.193520i) q^{51} +(6.63542 + 11.4929i) q^{53} -2.16500 q^{55} -3.52151 q^{57} +(2.30789 + 3.99737i) q^{59} +(4.08660 + 2.35940i) q^{61} +(0.0537914 + 2.64520i) q^{63} +(-0.312234 + 0.540805i) q^{65} +(-7.20299 + 4.15865i) q^{67} +4.47042i q^{69} +1.64174i q^{71} +(14.2438 - 8.22367i) q^{73} +(-0.500000 + 0.866025i) q^{75} +(2.76257 - 5.01783i) q^{77} +(1.03740 + 0.598945i) q^{79} +(-0.500000 - 0.866025i) q^{81} -0.472163 q^{83} +0.387040 q^{85} +(4.73662 + 8.20406i) q^{87} +(5.00002 + 2.88676i) q^{89} +(-0.855013 - 1.41374i) q^{91} +(4.73346 - 8.19859i) q^{93} +(3.04972 - 1.76076i) q^{95} -2.92471i q^{97} +2.16500i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{3} - 2 q^{7} - 6 q^{9} + 10 q^{19} - 4 q^{21} + 12 q^{23} + 6 q^{25} - 12 q^{27} + 8 q^{29} - 2 q^{31} - 4 q^{35} - 10 q^{37} + 6 q^{39} + 2 q^{49} + 16 q^{53} + 20 q^{57} + 24 q^{61} - 2 q^{63}+ \cdots + 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) 0 0
\(5\) −0.866025 0.500000i −0.387298 0.223607i
\(6\) 0 0
\(7\) 2.26392 1.36919i 0.855681 0.517504i
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 1.87494 1.08250i 0.565316 0.326385i −0.189960 0.981792i \(-0.560836\pi\)
0.755276 + 0.655406i \(0.227503\pi\)
\(12\) 0 0
\(13\) 0.624468i 0.173196i −0.996243 0.0865981i \(-0.972400\pi\)
0.996243 0.0865981i \(-0.0275996\pi\)
\(14\) 0 0
\(15\) 1.00000i 0.258199i
\(16\) 0 0
\(17\) −0.335186 + 0.193520i −0.0812946 + 0.0469355i −0.540096 0.841603i \(-0.681612\pi\)
0.458802 + 0.888539i \(0.348279\pi\)
\(18\) 0 0
\(19\) −1.76076 + 3.04972i −0.403945 + 0.699654i −0.994198 0.107565i \(-0.965695\pi\)
0.590253 + 0.807219i \(0.299028\pi\)
\(20\) 0 0
\(21\) 2.31771 + 1.27602i 0.505766 + 0.278450i
\(22\) 0 0
\(23\) 3.87150 + 2.23521i 0.807264 + 0.466074i 0.846005 0.533175i \(-0.179001\pi\)
−0.0387410 + 0.999249i \(0.512335\pi\)
\(24\) 0 0
\(25\) 0.500000 + 0.866025i 0.100000 + 0.173205i
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 9.47323 1.75914 0.879568 0.475774i \(-0.157832\pi\)
0.879568 + 0.475774i \(0.157832\pi\)
\(30\) 0 0
\(31\) −4.73346 8.19859i −0.850154 1.47251i −0.881069 0.472988i \(-0.843176\pi\)
0.0309153 0.999522i \(-0.490158\pi\)
\(32\) 0 0
\(33\) 1.87494 + 1.08250i 0.326385 + 0.188439i
\(34\) 0 0
\(35\) −2.64520 + 0.0537914i −0.447121 + 0.00909240i
\(36\) 0 0
\(37\) 1.85852 3.21904i 0.305538 0.529207i −0.671843 0.740694i \(-0.734497\pi\)
0.977381 + 0.211486i \(0.0678304\pi\)
\(38\) 0 0
\(39\) 0.540805 0.312234i 0.0865981 0.0499975i
\(40\) 0 0
\(41\) 4.80729i 0.750773i −0.926868 0.375387i \(-0.877510\pi\)
0.926868 0.375387i \(-0.122490\pi\)
\(42\) 0 0
\(43\) 8.75451i 1.33505i −0.744587 0.667525i \(-0.767354\pi\)
0.744587 0.667525i \(-0.232646\pi\)
\(44\) 0 0
\(45\) 0.866025 0.500000i 0.129099 0.0745356i
\(46\) 0 0
\(47\) 0.432944 0.749882i 0.0631514 0.109381i −0.832721 0.553693i \(-0.813218\pi\)
0.895872 + 0.444311i \(0.146552\pi\)
\(48\) 0 0
\(49\) 3.25065 6.19946i 0.464379 0.885636i
\(50\) 0 0
\(51\) −0.335186 0.193520i −0.0469355 0.0270982i
\(52\) 0 0
\(53\) 6.63542 + 11.4929i 0.911445 + 1.57867i 0.812024 + 0.583624i \(0.198366\pi\)
0.0994207 + 0.995045i \(0.468301\pi\)
\(54\) 0 0
\(55\) −2.16500 −0.291928
\(56\) 0 0
\(57\) −3.52151 −0.466436
\(58\) 0 0
\(59\) 2.30789 + 3.99737i 0.300461 + 0.520414i 0.976240 0.216690i \(-0.0695261\pi\)
−0.675779 + 0.737104i \(0.736193\pi\)
\(60\) 0 0
\(61\) 4.08660 + 2.35940i 0.523236 + 0.302091i 0.738258 0.674519i \(-0.235649\pi\)
−0.215022 + 0.976609i \(0.568982\pi\)
\(62\) 0 0
\(63\) 0.0537914 + 2.64520i 0.00677708 + 0.333264i
\(64\) 0 0
\(65\) −0.312234 + 0.540805i −0.0387279 + 0.0670786i
\(66\) 0 0
\(67\) −7.20299 + 4.15865i −0.879986 + 0.508060i −0.870654 0.491896i \(-0.836304\pi\)
−0.00933200 + 0.999956i \(0.502971\pi\)
\(68\) 0 0
\(69\) 4.47042i 0.538176i
\(70\) 0 0
\(71\) 1.64174i 0.194839i 0.995243 + 0.0974195i \(0.0310589\pi\)
−0.995243 + 0.0974195i \(0.968941\pi\)
\(72\) 0 0
\(73\) 14.2438 8.22367i 1.66711 0.962508i 0.697930 0.716166i \(-0.254105\pi\)
0.969183 0.246342i \(-0.0792285\pi\)
\(74\) 0 0
\(75\) −0.500000 + 0.866025i −0.0577350 + 0.100000i
\(76\) 0 0
\(77\) 2.76257 5.01783i 0.314824 0.571835i
\(78\) 0 0
\(79\) 1.03740 + 0.598945i 0.116717 + 0.0673866i 0.557222 0.830364i \(-0.311867\pi\)
−0.440505 + 0.897750i \(0.645201\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) −0.472163 −0.0518266 −0.0259133 0.999664i \(-0.508249\pi\)
−0.0259133 + 0.999664i \(0.508249\pi\)
\(84\) 0 0
\(85\) 0.387040 0.0419804
\(86\) 0 0
\(87\) 4.73662 + 8.20406i 0.507819 + 0.879568i
\(88\) 0 0
\(89\) 5.00002 + 2.88676i 0.530001 + 0.305996i 0.741017 0.671486i \(-0.234344\pi\)
−0.211016 + 0.977483i \(0.567677\pi\)
\(90\) 0 0
\(91\) −0.855013 1.41374i −0.0896298 0.148201i
\(92\) 0 0
\(93\) 4.73346 8.19859i 0.490837 0.850154i
\(94\) 0 0
\(95\) 3.04972 1.76076i 0.312895 0.180650i
\(96\) 0 0
\(97\) 2.92471i 0.296960i −0.988915 0.148480i \(-0.952562\pi\)
0.988915 0.148480i \(-0.0474380\pi\)
\(98\) 0 0
\(99\) 2.16500i 0.217590i
\(100\) 0 0
\(101\) 10.1093 5.83659i 1.00591 0.580763i 0.0959186 0.995389i \(-0.469421\pi\)
0.909992 + 0.414627i \(0.136088\pi\)
\(102\) 0 0
\(103\) −0.0474683 + 0.0822176i −0.00467720 + 0.00810114i −0.868355 0.495944i \(-0.834822\pi\)
0.863677 + 0.504045i \(0.168155\pi\)
\(104\) 0 0
\(105\) −1.36919 2.26392i −0.133619 0.220936i
\(106\) 0 0
\(107\) 10.1493 + 5.85968i 0.981166 + 0.566477i 0.902622 0.430434i \(-0.141639\pi\)
0.0785443 + 0.996911i \(0.474973\pi\)
\(108\) 0 0
\(109\) 7.02019 + 12.1593i 0.672412 + 1.16465i 0.977218 + 0.212237i \(0.0680749\pi\)
−0.304806 + 0.952414i \(0.598592\pi\)
\(110\) 0 0
\(111\) 3.71703 0.352805
\(112\) 0 0
\(113\) −11.4871 −1.08062 −0.540309 0.841467i \(-0.681692\pi\)
−0.540309 + 0.841467i \(0.681692\pi\)
\(114\) 0 0
\(115\) −2.23521 3.87150i −0.208435 0.361019i
\(116\) 0 0
\(117\) 0.540805 + 0.312234i 0.0499975 + 0.0288660i
\(118\) 0 0
\(119\) −0.493870 + 0.897046i −0.0452729 + 0.0822321i
\(120\) 0 0
\(121\) −3.15640 + 5.46704i −0.286945 + 0.497004i
\(122\) 0 0
\(123\) 4.16324 2.40365i 0.375387 0.216730i
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 9.75839i 0.865917i −0.901414 0.432958i \(-0.857470\pi\)
0.901414 0.432958i \(-0.142530\pi\)
\(128\) 0 0
\(129\) 7.58163 4.37726i 0.667525 0.385396i
\(130\) 0 0
\(131\) −6.20248 + 10.7430i −0.541913 + 0.938620i 0.456881 + 0.889528i \(0.348966\pi\)
−0.998794 + 0.0490929i \(0.984367\pi\)
\(132\) 0 0
\(133\) 0.189427 + 9.31512i 0.0164254 + 0.807724i
\(134\) 0 0
\(135\) 0.866025 + 0.500000i 0.0745356 + 0.0430331i
\(136\) 0 0
\(137\) −3.73318 6.46605i −0.318947 0.552432i 0.661322 0.750102i \(-0.269996\pi\)
−0.980269 + 0.197670i \(0.936663\pi\)
\(138\) 0 0
\(139\) −15.4516 −1.31059 −0.655294 0.755374i \(-0.727455\pi\)
−0.655294 + 0.755374i \(0.727455\pi\)
\(140\) 0 0
\(141\) 0.865889 0.0729210
\(142\) 0 0
\(143\) −0.675985 1.17084i −0.0565287 0.0979106i
\(144\) 0 0
\(145\) −8.20406 4.73662i −0.681310 0.393355i
\(146\) 0 0
\(147\) 6.99421 0.284578i 0.576873 0.0234716i
\(148\) 0 0
\(149\) 1.31904 2.28464i 0.108060 0.187165i −0.806924 0.590655i \(-0.798870\pi\)
0.914984 + 0.403490i \(0.132203\pi\)
\(150\) 0 0
\(151\) 3.67537 2.12197i 0.299097 0.172684i −0.342940 0.939357i \(-0.611423\pi\)
0.642037 + 0.766673i \(0.278089\pi\)
\(152\) 0 0
\(153\) 0.387040i 0.0312903i
\(154\) 0 0
\(155\) 9.46691i 0.760401i
\(156\) 0 0
\(157\) −8.84051 + 5.10407i −0.705549 + 0.407349i −0.809411 0.587243i \(-0.800213\pi\)
0.103862 + 0.994592i \(0.466880\pi\)
\(158\) 0 0
\(159\) −6.63542 + 11.4929i −0.526223 + 0.911445i
\(160\) 0 0
\(161\) 11.8252 0.240470i 0.931955 0.0189517i
\(162\) 0 0
\(163\) −2.18219 1.25989i −0.170922 0.0986820i 0.412098 0.911139i \(-0.364796\pi\)
−0.583021 + 0.812457i \(0.698129\pi\)
\(164\) 0 0
\(165\) −1.08250 1.87494i −0.0842723 0.145964i
\(166\) 0 0
\(167\) −6.00269 −0.464502 −0.232251 0.972656i \(-0.574609\pi\)
−0.232251 + 0.972656i \(0.574609\pi\)
\(168\) 0 0
\(169\) 12.6100 0.970003
\(170\) 0 0
\(171\) −1.76076 3.04972i −0.134648 0.233218i
\(172\) 0 0
\(173\) 8.04871 + 4.64693i 0.611932 + 0.353299i 0.773721 0.633526i \(-0.218393\pi\)
−0.161789 + 0.986825i \(0.551726\pi\)
\(174\) 0 0
\(175\) 2.31771 + 1.27602i 0.175202 + 0.0964579i
\(176\) 0 0
\(177\) −2.30789 + 3.99737i −0.173471 + 0.300461i
\(178\) 0 0
\(179\) −10.9947 + 6.34782i −0.821786 + 0.474458i −0.851032 0.525114i \(-0.824023\pi\)
0.0292459 + 0.999572i \(0.490689\pi\)
\(180\) 0 0
\(181\) 12.8039i 0.951704i 0.879525 + 0.475852i \(0.157860\pi\)
−0.879525 + 0.475852i \(0.842140\pi\)
\(182\) 0 0
\(183\) 4.71880i 0.348824i
\(184\) 0 0
\(185\) −3.21904 + 1.85852i −0.236669 + 0.136641i
\(186\) 0 0
\(187\) −0.418970 + 0.725677i −0.0306381 + 0.0530667i
\(188\) 0 0
\(189\) −2.26392 + 1.36919i −0.164676 + 0.0995937i
\(190\) 0 0
\(191\) 22.0574 + 12.7349i 1.59602 + 0.921462i 0.992244 + 0.124308i \(0.0396711\pi\)
0.603776 + 0.797154i \(0.293662\pi\)
\(192\) 0 0
\(193\) −2.75726 4.77571i −0.198472 0.343763i 0.749561 0.661935i \(-0.230264\pi\)
−0.948033 + 0.318172i \(0.896931\pi\)
\(194\) 0 0
\(195\) −0.624468 −0.0447191
\(196\) 0 0
\(197\) −18.1310 −1.29178 −0.645890 0.763430i \(-0.723514\pi\)
−0.645890 + 0.763430i \(0.723514\pi\)
\(198\) 0 0
\(199\) −12.7094 22.0133i −0.900944 1.56048i −0.826271 0.563273i \(-0.809542\pi\)
−0.0746728 0.997208i \(-0.523791\pi\)
\(200\) 0 0
\(201\) −7.20299 4.15865i −0.508060 0.293329i
\(202\) 0 0
\(203\) 21.4466 12.9706i 1.50526 0.910360i
\(204\) 0 0
\(205\) −2.40365 + 4.16324i −0.167878 + 0.290773i
\(206\) 0 0
\(207\) −3.87150 + 2.23521i −0.269088 + 0.155358i
\(208\) 0 0
\(209\) 7.62406i 0.527367i
\(210\) 0 0
\(211\) 17.8978i 1.23214i −0.787692 0.616069i \(-0.788724\pi\)
0.787692 0.616069i \(-0.211276\pi\)
\(212\) 0 0
\(213\) −1.42179 + 0.820871i −0.0974195 + 0.0562452i
\(214\) 0 0
\(215\) −4.37726 + 7.58163i −0.298526 + 0.517063i
\(216\) 0 0
\(217\) −21.9416 12.0799i −1.48949 0.820040i
\(218\) 0 0
\(219\) 14.2438 + 8.22367i 0.962508 + 0.555704i
\(220\) 0 0
\(221\) 0.120847 + 0.209313i 0.00812905 + 0.0140799i
\(222\) 0 0
\(223\) −5.65034 −0.378375 −0.189187 0.981941i \(-0.560585\pi\)
−0.189187 + 0.981941i \(0.560585\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) −11.5695 20.0390i −0.767896 1.33003i −0.938702 0.344730i \(-0.887970\pi\)
0.170806 0.985305i \(-0.445363\pi\)
\(228\) 0 0
\(229\) 15.9897 + 9.23168i 1.05663 + 0.610046i 0.924499 0.381186i \(-0.124484\pi\)
0.132133 + 0.991232i \(0.457817\pi\)
\(230\) 0 0
\(231\) 5.72685 0.116458i 0.376799 0.00766238i
\(232\) 0 0
\(233\) 6.10122 10.5676i 0.399704 0.692308i −0.593985 0.804476i \(-0.702446\pi\)
0.993689 + 0.112168i \(0.0357796\pi\)
\(234\) 0 0
\(235\) −0.749882 + 0.432944i −0.0489169 + 0.0282422i
\(236\) 0 0
\(237\) 1.19789i 0.0778114i
\(238\) 0 0
\(239\) 10.9016i 0.705163i −0.935781 0.352581i \(-0.885304\pi\)
0.935781 0.352581i \(-0.114696\pi\)
\(240\) 0 0
\(241\) −5.24772 + 3.02977i −0.338036 + 0.195165i −0.659403 0.751790i \(-0.729191\pi\)
0.321367 + 0.946955i \(0.395858\pi\)
\(242\) 0 0
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) 0 0
\(245\) −5.91488 + 3.74356i −0.377888 + 0.239167i
\(246\) 0 0
\(247\) 1.90445 + 1.09954i 0.121177 + 0.0699618i
\(248\) 0 0
\(249\) −0.236081 0.408905i −0.0149611 0.0259133i
\(250\) 0 0
\(251\) −13.0474 −0.823543 −0.411771 0.911287i \(-0.635090\pi\)
−0.411771 + 0.911287i \(0.635090\pi\)
\(252\) 0 0
\(253\) 9.67845 0.608479
\(254\) 0 0
\(255\) 0.193520 + 0.335186i 0.0121187 + 0.0209902i
\(256\) 0 0
\(257\) −26.5382 15.3218i −1.65541 0.955749i −0.974794 0.223105i \(-0.928381\pi\)
−0.680612 0.732644i \(-0.738286\pi\)
\(258\) 0 0
\(259\) −0.199944 9.83230i −0.0124239 0.610950i
\(260\) 0 0
\(261\) −4.73662 + 8.20406i −0.293189 + 0.507819i
\(262\) 0 0
\(263\) −14.5348 + 8.39167i −0.896254 + 0.517452i −0.875983 0.482342i \(-0.839786\pi\)
−0.0202710 + 0.999795i \(0.506453\pi\)
\(264\) 0 0
\(265\) 13.2708i 0.815221i
\(266\) 0 0
\(267\) 5.77352i 0.353334i
\(268\) 0 0
\(269\) 4.28678 2.47497i 0.261370 0.150902i −0.363590 0.931559i \(-0.618449\pi\)
0.624959 + 0.780657i \(0.285116\pi\)
\(270\) 0 0
\(271\) −2.87212 + 4.97466i −0.174469 + 0.302189i −0.939977 0.341237i \(-0.889154\pi\)
0.765508 + 0.643426i \(0.222487\pi\)
\(272\) 0 0
\(273\) 0.796832 1.44734i 0.0482265 0.0875967i
\(274\) 0 0
\(275\) 1.87494 + 1.08250i 0.113063 + 0.0652771i
\(276\) 0 0
\(277\) −4.56118 7.90020i −0.274055 0.474677i 0.695841 0.718196i \(-0.255032\pi\)
−0.969896 + 0.243518i \(0.921698\pi\)
\(278\) 0 0
\(279\) 9.46691 0.566769
\(280\) 0 0
\(281\) −4.78334 −0.285350 −0.142675 0.989770i \(-0.545570\pi\)
−0.142675 + 0.989770i \(0.545570\pi\)
\(282\) 0 0
\(283\) 0.176678 + 0.306014i 0.0105024 + 0.0181907i 0.871229 0.490877i \(-0.163324\pi\)
−0.860726 + 0.509068i \(0.829990\pi\)
\(284\) 0 0
\(285\) 3.04972 + 1.76076i 0.180650 + 0.104298i
\(286\) 0 0
\(287\) −6.58208 10.8833i −0.388528 0.642422i
\(288\) 0 0
\(289\) −8.42510 + 14.5927i −0.495594 + 0.858394i
\(290\) 0 0
\(291\) 2.53288 1.46236i 0.148480 0.0857248i
\(292\) 0 0
\(293\) 18.1101i 1.05800i 0.848621 + 0.529001i \(0.177433\pi\)
−0.848621 + 0.529001i \(0.822567\pi\)
\(294\) 0 0
\(295\) 4.61577i 0.268741i
\(296\) 0 0
\(297\) −1.87494 + 1.08250i −0.108795 + 0.0628129i
\(298\) 0 0
\(299\) 1.39582 2.41763i 0.0807223 0.139815i
\(300\) 0 0
\(301\) −11.9866 19.8195i −0.690894 1.14238i
\(302\) 0 0
\(303\) 10.1093 + 5.83659i 0.580763 + 0.335303i
\(304\) 0 0
\(305\) −2.35940 4.08660i −0.135099 0.233998i
\(306\) 0 0
\(307\) −8.94552 −0.510548 −0.255274 0.966869i \(-0.582166\pi\)
−0.255274 + 0.966869i \(0.582166\pi\)
\(308\) 0 0
\(309\) −0.0949367 −0.00540076
\(310\) 0 0
\(311\) 11.3699 + 19.6932i 0.644727 + 1.11670i 0.984365 + 0.176143i \(0.0563622\pi\)
−0.339638 + 0.940556i \(0.610304\pi\)
\(312\) 0 0
\(313\) −2.01263 1.16199i −0.113761 0.0656797i 0.442040 0.896995i \(-0.354255\pi\)
−0.555801 + 0.831316i \(0.687588\pi\)
\(314\) 0 0
\(315\) 1.27602 2.31771i 0.0718954 0.130588i
\(316\) 0 0
\(317\) −3.20795 + 5.55634i −0.180177 + 0.312075i −0.941941 0.335780i \(-0.891000\pi\)
0.761764 + 0.647855i \(0.224334\pi\)
\(318\) 0 0
\(319\) 17.7618 10.2548i 0.994467 0.574156i
\(320\) 0 0
\(321\) 11.7194i 0.654111i
\(322\) 0 0
\(323\) 1.36297i 0.0758375i
\(324\) 0 0
\(325\) 0.540805 0.312234i 0.0299985 0.0173196i
\(326\) 0 0
\(327\) −7.02019 + 12.1593i −0.388217 + 0.672412i
\(328\) 0 0
\(329\) −0.0465774 2.29045i −0.00256789 0.126277i
\(330\) 0 0
\(331\) −13.1467 7.59025i −0.722608 0.417198i 0.0931036 0.995656i \(-0.470321\pi\)
−0.815712 + 0.578458i \(0.803655\pi\)
\(332\) 0 0
\(333\) 1.85852 + 3.21904i 0.101846 + 0.176402i
\(334\) 0 0
\(335\) 8.31730 0.454423
\(336\) 0 0
\(337\) −20.9205 −1.13961 −0.569807 0.821779i \(-0.692982\pi\)
−0.569807 + 0.821779i \(0.692982\pi\)
\(338\) 0 0
\(339\) −5.74356 9.94814i −0.311947 0.540309i
\(340\) 0 0
\(341\) −17.7499 10.2479i −0.961211 0.554955i
\(342\) 0 0
\(343\) −1.12900 18.4858i −0.0609601 0.998140i
\(344\) 0 0
\(345\) 2.23521 3.87150i 0.120340 0.208435i
\(346\) 0 0
\(347\) 23.0621 13.3149i 1.23804 0.714783i 0.269347 0.963043i \(-0.413192\pi\)
0.968693 + 0.248261i \(0.0798589\pi\)
\(348\) 0 0
\(349\) 21.5362i 1.15281i −0.817165 0.576404i \(-0.804455\pi\)
0.817165 0.576404i \(-0.195545\pi\)
\(350\) 0 0
\(351\) 0.624468i 0.0333316i
\(352\) 0 0
\(353\) −8.12477 + 4.69084i −0.432438 + 0.249668i −0.700385 0.713766i \(-0.746988\pi\)
0.267947 + 0.963434i \(0.413655\pi\)
\(354\) 0 0
\(355\) 0.820871 1.42179i 0.0435673 0.0754608i
\(356\) 0 0
\(357\) −1.02380 + 0.0208194i −0.0541852 + 0.00110188i
\(358\) 0 0
\(359\) 13.3749 + 7.72199i 0.705899 + 0.407551i 0.809541 0.587064i \(-0.199716\pi\)
−0.103642 + 0.994615i \(0.533050\pi\)
\(360\) 0 0
\(361\) 3.29947 + 5.71485i 0.173656 + 0.300782i
\(362\) 0 0
\(363\) −6.31280 −0.331336
\(364\) 0 0
\(365\) −16.4473 −0.860893
\(366\) 0 0
\(367\) −10.9725 19.0050i −0.572761 0.992051i −0.996281 0.0861645i \(-0.972539\pi\)
0.423520 0.905887i \(-0.360794\pi\)
\(368\) 0 0
\(369\) 4.16324 + 2.40365i 0.216730 + 0.125129i
\(370\) 0 0
\(371\) 30.7580 + 16.9338i 1.59687 + 0.879160i
\(372\) 0 0
\(373\) −14.7767 + 25.5940i −0.765108 + 1.32521i 0.175081 + 0.984554i \(0.443981\pi\)
−0.940189 + 0.340652i \(0.889352\pi\)
\(374\) 0 0
\(375\) 0.866025 0.500000i 0.0447214 0.0258199i
\(376\) 0 0
\(377\) 5.91573i 0.304676i
\(378\) 0 0
\(379\) 31.4003i 1.61293i 0.591284 + 0.806463i \(0.298621\pi\)
−0.591284 + 0.806463i \(0.701379\pi\)
\(380\) 0 0
\(381\) 8.45101 4.87919i 0.432958 0.249969i
\(382\) 0 0
\(383\) −9.28472 + 16.0816i −0.474427 + 0.821732i −0.999571 0.0292814i \(-0.990678\pi\)
0.525144 + 0.851013i \(0.324011\pi\)
\(384\) 0 0
\(385\) −4.90137 + 2.96428i −0.249797 + 0.151074i
\(386\) 0 0
\(387\) 7.58163 + 4.37726i 0.385396 + 0.222508i
\(388\) 0 0
\(389\) 18.0827 + 31.3202i 0.916832 + 1.58800i 0.804197 + 0.594362i \(0.202595\pi\)
0.112634 + 0.993637i \(0.464071\pi\)
\(390\) 0 0
\(391\) −1.73023 −0.0875016
\(392\) 0 0
\(393\) −12.4050 −0.625747
\(394\) 0 0
\(395\) −0.598945 1.03740i −0.0301362 0.0521974i
\(396\) 0 0
\(397\) −22.8204 13.1754i −1.14533 0.661254i −0.197582 0.980286i \(-0.563309\pi\)
−0.947744 + 0.319032i \(0.896642\pi\)
\(398\) 0 0
\(399\) −7.97242 + 4.82161i −0.399120 + 0.241382i
\(400\) 0 0
\(401\) −0.195516 + 0.338644i −0.00976361 + 0.0169111i −0.870866 0.491521i \(-0.836441\pi\)
0.861102 + 0.508432i \(0.169775\pi\)
\(402\) 0 0
\(403\) −5.11975 + 2.95589i −0.255033 + 0.147243i
\(404\) 0 0
\(405\) 1.00000i 0.0496904i
\(406\) 0 0
\(407\) 8.04735i 0.398892i
\(408\) 0 0
\(409\) 3.09564 1.78727i 0.153070 0.0883748i −0.421509 0.906824i \(-0.638499\pi\)
0.574578 + 0.818450i \(0.305166\pi\)
\(410\) 0 0
\(411\) 3.73318 6.46605i 0.184144 0.318947i
\(412\) 0 0
\(413\) 10.6980 + 5.88980i 0.526415 + 0.289818i
\(414\) 0 0
\(415\) 0.408905 + 0.236081i 0.0200724 + 0.0115888i
\(416\) 0 0
\(417\) −7.72580 13.3815i −0.378334 0.655294i
\(418\) 0 0
\(419\) 8.40368 0.410547 0.205273 0.978705i \(-0.434192\pi\)
0.205273 + 0.978705i \(0.434192\pi\)
\(420\) 0 0
\(421\) 13.1746 0.642089 0.321045 0.947064i \(-0.395966\pi\)
0.321045 + 0.947064i \(0.395966\pi\)
\(422\) 0 0
\(423\) 0.432944 + 0.749882i 0.0210505 + 0.0364605i
\(424\) 0 0
\(425\) −0.335186 0.193520i −0.0162589 0.00938709i
\(426\) 0 0
\(427\) 12.4822 0.253831i 0.604056 0.0122837i
\(428\) 0 0
\(429\) 0.675985 1.17084i 0.0326369 0.0565287i
\(430\) 0 0
\(431\) −30.6869 + 17.7171i −1.47813 + 0.853401i −0.999694 0.0247194i \(-0.992131\pi\)
−0.478440 + 0.878120i \(0.658797\pi\)
\(432\) 0 0
\(433\) 24.7571i 1.18975i −0.803818 0.594875i \(-0.797202\pi\)
0.803818 0.594875i \(-0.202798\pi\)
\(434\) 0 0
\(435\) 9.47323i 0.454207i
\(436\) 0 0
\(437\) −13.6335 + 7.87133i −0.652181 + 0.376537i
\(438\) 0 0
\(439\) −8.62200 + 14.9337i −0.411506 + 0.712749i −0.995055 0.0993292i \(-0.968330\pi\)
0.583549 + 0.812078i \(0.301664\pi\)
\(440\) 0 0
\(441\) 3.74356 + 5.91488i 0.178265 + 0.281661i
\(442\) 0 0
\(443\) 2.77380 + 1.60145i 0.131787 + 0.0760873i 0.564444 0.825471i \(-0.309091\pi\)
−0.432657 + 0.901559i \(0.642424\pi\)
\(444\) 0 0
\(445\) −2.88676 5.00002i −0.136846 0.237024i
\(446\) 0 0
\(447\) 2.63808 0.124777
\(448\) 0 0
\(449\) −6.87442 −0.324424 −0.162212 0.986756i \(-0.551863\pi\)
−0.162212 + 0.986756i \(0.551863\pi\)
\(450\) 0 0
\(451\) −5.20388 9.01339i −0.245041 0.424424i
\(452\) 0 0
\(453\) 3.67537 + 2.12197i 0.172684 + 0.0996990i
\(454\) 0 0
\(455\) 0.0335910 + 1.65185i 0.00157477 + 0.0774397i
\(456\) 0 0
\(457\) −6.71794 + 11.6358i −0.314252 + 0.544301i −0.979278 0.202519i \(-0.935087\pi\)
0.665026 + 0.746820i \(0.268420\pi\)
\(458\) 0 0
\(459\) 0.335186 0.193520i 0.0156452 0.00903274i
\(460\) 0 0
\(461\) 17.4847i 0.814342i 0.913352 + 0.407171i \(0.133485\pi\)
−0.913352 + 0.407171i \(0.866515\pi\)
\(462\) 0 0
\(463\) 27.1433i 1.26146i −0.776003 0.630729i \(-0.782756\pi\)
0.776003 0.630729i \(-0.217244\pi\)
\(464\) 0 0
\(465\) −8.19859 + 4.73346i −0.380200 + 0.219509i
\(466\) 0 0
\(467\) −3.82517 + 6.62539i −0.177008 + 0.306586i −0.940854 0.338812i \(-0.889975\pi\)
0.763847 + 0.645398i \(0.223308\pi\)
\(468\) 0 0
\(469\) −10.6130 + 19.2771i −0.490064 + 0.890133i
\(470\) 0 0
\(471\) −8.84051 5.10407i −0.407349 0.235183i
\(472\) 0 0
\(473\) −9.47674 16.4142i −0.435741 0.754725i
\(474\) 0 0
\(475\) −3.52151 −0.161578
\(476\) 0 0
\(477\) −13.2708 −0.607630
\(478\) 0 0
\(479\) −17.5088 30.3262i −0.799999 1.38564i −0.919616 0.392818i \(-0.871500\pi\)
0.119618 0.992820i \(-0.461833\pi\)
\(480\) 0 0
\(481\) −2.01019 1.16058i −0.0916567 0.0529180i
\(482\) 0 0
\(483\) 6.12085 + 10.1207i 0.278508 + 0.460507i
\(484\) 0 0
\(485\) −1.46236 + 2.53288i −0.0664022 + 0.115012i
\(486\) 0 0
\(487\) −20.2636 + 11.6992i −0.918230 + 0.530140i −0.883070 0.469241i \(-0.844527\pi\)
−0.0351600 + 0.999382i \(0.511194\pi\)
\(488\) 0 0
\(489\) 2.51978i 0.113948i
\(490\) 0 0
\(491\) 6.69380i 0.302087i 0.988527 + 0.151044i \(0.0482634\pi\)
−0.988527 + 0.151044i \(0.951737\pi\)
\(492\) 0 0
\(493\) −3.17530 + 1.83326i −0.143008 + 0.0825659i
\(494\) 0 0
\(495\) 1.08250 1.87494i 0.0486546 0.0842723i
\(496\) 0 0
\(497\) 2.24785 + 3.71677i 0.100830 + 0.166720i
\(498\) 0 0
\(499\) 25.1746 + 14.5345i 1.12697 + 0.650655i 0.943171 0.332309i \(-0.107828\pi\)
0.183797 + 0.982964i \(0.441161\pi\)
\(500\) 0 0
\(501\) −3.00135 5.19849i −0.134090 0.232251i
\(502\) 0 0
\(503\) −2.45562 −0.109491 −0.0547454 0.998500i \(-0.517435\pi\)
−0.0547454 + 0.998500i \(0.517435\pi\)
\(504\) 0 0
\(505\) −11.6732 −0.519450
\(506\) 0 0
\(507\) 6.30502 + 10.9206i 0.280016 + 0.485002i
\(508\) 0 0
\(509\) 10.7499 + 6.20647i 0.476482 + 0.275097i 0.718949 0.695063i \(-0.244623\pi\)
−0.242467 + 0.970160i \(0.577957\pi\)
\(510\) 0 0
\(511\) 20.9871 38.1202i 0.928415 1.68634i
\(512\) 0 0
\(513\) 1.76076 3.04972i 0.0777393 0.134648i
\(514\) 0 0
\(515\) 0.0822176 0.0474683i 0.00362294 0.00209171i
\(516\) 0 0
\(517\) 1.87465i 0.0824468i
\(518\) 0 0
\(519\) 9.29386i 0.407955i
\(520\) 0 0
\(521\) −29.1390 + 16.8234i −1.27660 + 0.737048i −0.976222 0.216771i \(-0.930447\pi\)
−0.300382 + 0.953819i \(0.597114\pi\)
\(522\) 0 0
\(523\) −18.1358 + 31.4121i −0.793022 + 1.37356i 0.131065 + 0.991374i \(0.458160\pi\)
−0.924087 + 0.382181i \(0.875173\pi\)
\(524\) 0 0
\(525\) 0.0537914 + 2.64520i 0.00234765 + 0.115446i
\(526\) 0 0
\(527\) 3.17318 + 1.83204i 0.138226 + 0.0798047i
\(528\) 0 0
\(529\) −1.50765 2.61133i −0.0655501 0.113536i
\(530\) 0 0
\(531\) −4.61577 −0.200307
\(532\) 0 0
\(533\) −3.00200 −0.130031
\(534\) 0 0
\(535\) −5.85968 10.1493i −0.253336 0.438791i
\(536\) 0 0
\(537\) −10.9947 6.34782i −0.474458 0.273929i
\(538\) 0 0
\(539\) −0.616111 15.1424i −0.0265378 0.652231i
\(540\) 0 0
\(541\) 13.3803 23.1753i 0.575263 0.996386i −0.420749 0.907177i \(-0.638233\pi\)
0.996013 0.0892087i \(-0.0284338\pi\)
\(542\) 0 0
\(543\) −11.0885 + 6.40193i −0.475852 + 0.274733i
\(544\) 0 0
\(545\) 14.0404i 0.601423i
\(546\) 0 0
\(547\) 23.0776i 0.986726i 0.869824 + 0.493363i \(0.164233\pi\)
−0.869824 + 0.493363i \(0.835767\pi\)
\(548\) 0 0
\(549\) −4.08660 + 2.35940i −0.174412 + 0.100697i
\(550\) 0 0
\(551\) −16.6801 + 28.8907i −0.710595 + 1.23079i
\(552\) 0 0
\(553\) 3.16867 0.0644362i 0.134745 0.00274011i
\(554\) 0 0
\(555\) −3.21904 1.85852i −0.136641 0.0788896i
\(556\) 0 0
\(557\) −15.5815 26.9879i −0.660207 1.14351i −0.980561 0.196215i \(-0.937135\pi\)
0.320354 0.947298i \(-0.396198\pi\)
\(558\) 0 0
\(559\) −5.46691 −0.231226
\(560\) 0 0
\(561\) −0.837939 −0.0353778
\(562\) 0 0
\(563\) −0.480238 0.831797i −0.0202396 0.0350561i 0.855728 0.517426i \(-0.173110\pi\)
−0.875968 + 0.482370i \(0.839776\pi\)
\(564\) 0 0
\(565\) 9.94814 + 5.74356i 0.418521 + 0.241633i
\(566\) 0 0
\(567\) −2.31771 1.27602i −0.0973347 0.0535877i
\(568\) 0 0
\(569\) 8.85745 15.3415i 0.371323 0.643151i −0.618446 0.785827i \(-0.712237\pi\)
0.989769 + 0.142676i \(0.0455708\pi\)
\(570\) 0 0
\(571\) −25.2165 + 14.5587i −1.05528 + 0.609264i −0.924122 0.382098i \(-0.875202\pi\)
−0.131155 + 0.991362i \(0.541869\pi\)
\(572\) 0 0
\(573\) 25.4697i 1.06401i
\(574\) 0 0
\(575\) 4.47042i 0.186430i
\(576\) 0 0
\(577\) −21.0379 + 12.1463i −0.875820 + 0.505655i −0.869278 0.494323i \(-0.835416\pi\)
−0.00654236 + 0.999979i \(0.502083\pi\)
\(578\) 0 0
\(579\) 2.75726 4.77571i 0.114588 0.198472i
\(580\) 0 0
\(581\) −1.06894 + 0.646479i −0.0443470 + 0.0268205i
\(582\) 0 0
\(583\) 24.8820 + 14.3657i 1.03051 + 0.594965i
\(584\) 0 0
\(585\) −0.312234 0.540805i −0.0129093 0.0223595i
\(586\) 0 0
\(587\) −8.36534 −0.345275 −0.172637 0.984985i \(-0.555229\pi\)
−0.172637 + 0.984985i \(0.555229\pi\)
\(588\) 0 0
\(589\) 33.3379 1.37366
\(590\) 0 0
\(591\) −9.06550 15.7019i −0.372905 0.645890i
\(592\) 0 0
\(593\) 26.0968 + 15.0670i 1.07167 + 0.618728i 0.928637 0.370990i \(-0.120982\pi\)
0.143031 + 0.989718i \(0.454315\pi\)
\(594\) 0 0
\(595\) 0.876227 0.529930i 0.0359218 0.0217250i
\(596\) 0 0
\(597\) 12.7094 22.0133i 0.520160 0.900944i
\(598\) 0 0
\(599\) 36.7001 21.1888i 1.49952 0.865751i 0.499525 0.866300i \(-0.333508\pi\)
1.00000 0.000548741i \(0.000174670\pi\)
\(600\) 0 0
\(601\) 12.3666i 0.504446i −0.967669 0.252223i \(-0.918838\pi\)
0.967669 0.252223i \(-0.0811616\pi\)
\(602\) 0 0
\(603\) 8.31730i 0.338707i
\(604\) 0 0
\(605\) 5.46704 3.15640i 0.222267 0.128326i
\(606\) 0 0
\(607\) −14.2387 + 24.6621i −0.577929 + 1.00100i 0.417787 + 0.908545i \(0.362806\pi\)
−0.995717 + 0.0924583i \(0.970528\pi\)
\(608\) 0 0
\(609\) 21.9562 + 12.0880i 0.889711 + 0.489831i
\(610\) 0 0
\(611\) −0.468277 0.270360i −0.0189445 0.0109376i
\(612\) 0 0
\(613\) 21.0904 + 36.5297i 0.851834 + 1.47542i 0.879552 + 0.475804i \(0.157843\pi\)
−0.0277177 + 0.999616i \(0.508824\pi\)
\(614\) 0 0
\(615\) −4.80729 −0.193849
\(616\) 0 0
\(617\) 10.2278 0.411756 0.205878 0.978578i \(-0.433995\pi\)
0.205878 + 0.978578i \(0.433995\pi\)
\(618\) 0 0
\(619\) −6.95024 12.0382i −0.279354 0.483855i 0.691870 0.722022i \(-0.256787\pi\)
−0.971224 + 0.238167i \(0.923454\pi\)
\(620\) 0 0
\(621\) −3.87150 2.23521i −0.155358 0.0896960i
\(622\) 0 0
\(623\) 15.2722 0.310566i 0.611866 0.0124426i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) −6.60263 + 3.81203i −0.263684 + 0.152238i
\(628\) 0 0
\(629\) 1.43864i 0.0573623i
\(630\) 0 0
\(631\) 30.4667i 1.21286i −0.795137 0.606430i \(-0.792601\pi\)
0.795137 0.606430i \(-0.207399\pi\)
\(632\) 0 0
\(633\) 15.5000 8.94892i 0.616069 0.355688i
\(634\) 0 0
\(635\) −4.87919 + 8.45101i −0.193625 + 0.335368i
\(636\) 0 0
\(637\) −3.87136 2.02993i −0.153389 0.0804287i
\(638\) 0 0
\(639\) −1.42179 0.820871i −0.0562452 0.0324732i
\(640\) 0 0
\(641\) −0.573997 0.994192i −0.0226715 0.0392682i 0.854467 0.519506i \(-0.173884\pi\)
−0.877139 + 0.480237i \(0.840551\pi\)
\(642\) 0 0
\(643\) −28.5026 −1.12403 −0.562017 0.827126i \(-0.689974\pi\)
−0.562017 + 0.827126i \(0.689974\pi\)
\(644\) 0 0
\(645\) −8.75451 −0.344709
\(646\) 0 0
\(647\) −8.77664 15.2016i −0.345046 0.597636i 0.640317 0.768111i \(-0.278803\pi\)
−0.985362 + 0.170475i \(0.945470\pi\)
\(648\) 0 0
\(649\) 8.65430 + 4.99656i 0.339711 + 0.196132i
\(650\) 0 0
\(651\) −0.509238 25.0419i −0.0199586 0.981470i
\(652\) 0 0
\(653\) 5.21286 9.02893i 0.203995 0.353329i −0.745817 0.666151i \(-0.767941\pi\)
0.949812 + 0.312821i \(0.101274\pi\)
\(654\) 0 0
\(655\) 10.7430 6.20248i 0.419764 0.242351i
\(656\) 0 0
\(657\) 16.4473i 0.641672i
\(658\) 0 0
\(659\) 0.397054i 0.0154670i 0.999970 + 0.00773351i \(0.00246168\pi\)
−0.999970 + 0.00773351i \(0.997538\pi\)
\(660\) 0 0
\(661\) −11.3038 + 6.52627i −0.439668 + 0.253843i −0.703457 0.710738i \(-0.748361\pi\)
0.263789 + 0.964581i \(0.415028\pi\)
\(662\) 0 0
\(663\) −0.120847 + 0.209313i −0.00469331 + 0.00812905i
\(664\) 0 0
\(665\) 4.49351 8.16185i 0.174251 0.316503i
\(666\) 0 0
\(667\) 36.6756 + 21.1747i 1.42009 + 0.819887i
\(668\) 0 0
\(669\) −2.82517 4.89334i −0.109227 0.189187i
\(670\) 0 0
\(671\) 10.2162 0.394392
\(672\) 0 0
\(673\) −2.94900 −0.113675 −0.0568377 0.998383i \(-0.518102\pi\)
−0.0568377 + 0.998383i \(0.518102\pi\)
\(674\) 0 0
\(675\) −0.500000 0.866025i −0.0192450 0.0333333i
\(676\) 0 0
\(677\) −30.4674 17.5904i −1.17096 0.676053i −0.217053 0.976160i \(-0.569644\pi\)
−0.953906 + 0.300107i \(0.902978\pi\)
\(678\) 0 0
\(679\) −4.00448 6.62131i −0.153678 0.254103i
\(680\) 0 0
\(681\) 11.5695 20.0390i 0.443345 0.767896i
\(682\) 0 0
\(683\) −24.0692 + 13.8964i −0.920984 + 0.531730i −0.883949 0.467584i \(-0.845125\pi\)
−0.0370352 + 0.999314i \(0.511791\pi\)
\(684\) 0 0
\(685\) 7.46636i 0.285275i
\(686\) 0 0
\(687\) 18.4634i 0.704421i
\(688\) 0 0
\(689\) 7.17694 4.14361i 0.273420 0.157859i
\(690\) 0 0
\(691\) −3.01643 + 5.22460i −0.114750 + 0.198753i −0.917680 0.397321i \(-0.869940\pi\)
0.802930 + 0.596074i \(0.203273\pi\)
\(692\) 0 0
\(693\) 2.96428 + 4.90137i 0.112604 + 0.186188i
\(694\) 0 0
\(695\) 13.3815 + 7.72580i 0.507589 + 0.293056i
\(696\) 0 0
\(697\) 0.930307 + 1.61134i 0.0352379 + 0.0610338i
\(698\) 0 0
\(699\) 12.2024 0.461538
\(700\) 0 0
\(701\) 26.3380 0.994773 0.497386 0.867529i \(-0.334293\pi\)
0.497386 + 0.867529i \(0.334293\pi\)
\(702\) 0 0
\(703\) 6.54479 + 11.3359i 0.246841 + 0.427542i
\(704\) 0 0
\(705\) −0.749882 0.432944i −0.0282422 0.0163056i
\(706\) 0 0
\(707\) 14.8952 27.0551i 0.560191 1.01751i
\(708\) 0 0
\(709\) −3.02042 + 5.23152i −0.113434 + 0.196474i −0.917153 0.398536i \(-0.869518\pi\)
0.803718 + 0.595010i \(0.202852\pi\)
\(710\) 0 0
\(711\) −1.03740 + 0.598945i −0.0389057 + 0.0224622i
\(712\) 0 0
\(713\) 42.3211i 1.58494i
\(714\) 0 0
\(715\) 1.35197i 0.0505608i
\(716\) 0 0
\(717\) 9.44102 5.45078i 0.352581 0.203563i
\(718\) 0 0
\(719\) −18.3181 + 31.7279i −0.683150 + 1.18325i 0.290865 + 0.956764i \(0.406057\pi\)
−0.974014 + 0.226486i \(0.927276\pi\)
\(720\) 0 0
\(721\) 0.00510678 + 0.251127i 0.000190186 + 0.00935246i
\(722\) 0 0
\(723\) −5.24772 3.02977i −0.195165 0.112679i
\(724\) 0 0
\(725\) 4.73662 + 8.20406i 0.175914 + 0.304691i
\(726\) 0 0
\(727\) 43.2058 1.60241 0.801207 0.598387i \(-0.204191\pi\)
0.801207 + 0.598387i \(0.204191\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 1.69417 + 2.93439i 0.0626612 + 0.108532i
\(732\) 0 0
\(733\) 20.7209 + 11.9632i 0.765345 + 0.441872i 0.831212 0.555956i \(-0.187648\pi\)
−0.0658665 + 0.997828i \(0.520981\pi\)
\(734\) 0 0
\(735\) −6.19946 3.25065i −0.228670 0.119902i
\(736\) 0 0
\(737\) −9.00346 + 15.5944i −0.331647 + 0.574429i
\(738\) 0 0
\(739\) 33.0290 19.0693i 1.21499 0.701476i 0.251149 0.967948i \(-0.419192\pi\)
0.963842 + 0.266473i \(0.0858582\pi\)
\(740\) 0 0
\(741\) 2.19907i 0.0807850i
\(742\) 0 0
\(743\) 11.9035i 0.436698i −0.975871 0.218349i \(-0.929933\pi\)
0.975871 0.218349i \(-0.0700671\pi\)
\(744\) 0 0
\(745\) −2.28464 + 1.31904i −0.0837028 + 0.0483258i
\(746\) 0 0
\(747\) 0.236081 0.408905i 0.00863777 0.0149611i
\(748\) 0 0
\(749\) 31.0001 0.630401i 1.13272 0.0230343i
\(750\) 0 0
\(751\) 13.0940 + 7.55980i 0.477805 + 0.275861i 0.719501 0.694491i \(-0.244370\pi\)
−0.241696 + 0.970352i \(0.577704\pi\)
\(752\) 0 0
\(753\) −6.52369 11.2994i −0.237736 0.411771i
\(754\) 0 0
\(755\) −4.24395 −0.154453
\(756\) 0 0
\(757\) 51.2575 1.86299 0.931493 0.363760i \(-0.118507\pi\)
0.931493 + 0.363760i \(0.118507\pi\)
\(758\) 0 0
\(759\) 4.83922 + 8.38178i 0.175653 + 0.304239i
\(760\) 0 0
\(761\) 30.3632 + 17.5302i 1.10066 + 0.635468i 0.936395 0.350947i \(-0.114140\pi\)
0.164268 + 0.986416i \(0.447474\pi\)
\(762\) 0 0
\(763\) 32.5415 + 17.9158i 1.17808 + 0.648594i
\(764\) 0 0
\(765\) −0.193520 + 0.335186i −0.00699673 + 0.0121187i
\(766\) 0 0
\(767\) 2.49623 1.44120i 0.0901337 0.0520387i
\(768\) 0 0
\(769\) 28.9855i 1.04524i 0.852564 + 0.522622i \(0.175046\pi\)
−0.852564 + 0.522622i \(0.824954\pi\)
\(770\) 0 0
\(771\) 30.6436i 1.10360i
\(772\) 0 0
\(773\) 23.2430 13.4194i 0.835994 0.482661i −0.0199066 0.999802i \(-0.506337\pi\)
0.855901 + 0.517141i \(0.173004\pi\)
\(774\) 0 0
\(775\) 4.73346 8.19859i 0.170031 0.294502i
\(776\) 0 0
\(777\) 8.41505 5.08931i 0.301888 0.182578i
\(778\) 0 0
\(779\) 14.6609 + 8.46448i 0.525281 + 0.303271i
\(780\) 0 0
\(781\) 1.77718 + 3.07817i 0.0635926 + 0.110146i
\(782\) 0 0
\(783\) −9.47323 −0.338546
\(784\) 0 0
\(785\) 10.2081 0.364344
\(786\) 0 0
\(787\) 14.0089 + 24.2642i 0.499365 + 0.864925i 1.00000 0.000733319i \(-0.000233423\pi\)
−0.500635 + 0.865659i \(0.666900\pi\)
\(788\) 0 0
\(789\) −14.5348 8.39167i −0.517452 0.298751i
\(790\) 0 0
\(791\) −26.0059 + 15.7280i −0.924663 + 0.559224i
\(792\) 0 0
\(793\) 1.47337 2.55195i 0.0523210 0.0906225i
\(794\) 0 0
\(795\) 11.4929 6.63542i 0.407611 0.235334i
\(796\) 0 0
\(797\) 2.37503i 0.0841279i −0.999115 0.0420640i \(-0.986607\pi\)
0.999115 0.0420640i \(-0.0133933\pi\)
\(798\) 0 0
\(799\) 0.335133i 0.0118562i
\(800\) 0 0
\(801\) −5.00002 + 2.88676i −0.176667 + 0.101999i
\(802\) 0 0
\(803\) 17.8042 30.8378i 0.628297 1.08824i
\(804\) 0 0
\(805\) −10.3611 5.70434i −0.365182 0.201052i
\(806\) 0 0
\(807\) 4.28678 + 2.47497i 0.150902 + 0.0871232i
\(808\) 0 0
\(809\) −8.04097 13.9274i −0.282705 0.489660i 0.689345 0.724434i \(-0.257899\pi\)
−0.972050 + 0.234773i \(0.924565\pi\)
\(810\) 0 0
\(811\) −18.8656 −0.662461 −0.331231 0.943550i \(-0.607464\pi\)
−0.331231 + 0.943550i \(0.607464\pi\)
\(812\) 0 0
\(813\) −5.74424 −0.201459
\(814\) 0 0
\(815\) 1.25989 + 2.18219i 0.0441319 + 0.0764388i
\(816\) 0 0
\(817\) 26.6988 + 15.4146i 0.934073 + 0.539287i
\(818\) 0 0
\(819\) 1.65185 0.0335910i 0.0577202 0.00117376i
\(820\) 0 0
\(821\) 8.83796 15.3078i 0.308447 0.534246i −0.669576 0.742744i \(-0.733524\pi\)
0.978023 + 0.208498i \(0.0668575\pi\)
\(822\) 0 0
\(823\) −29.6861 + 17.1393i −1.03479 + 0.597439i −0.918354 0.395759i \(-0.870481\pi\)
−0.116440 + 0.993198i \(0.537148\pi\)
\(824\) 0 0
\(825\) 2.16500i 0.0753755i
\(826\) 0 0
\(827\) 53.5653i 1.86265i −0.364190 0.931325i \(-0.618654\pi\)
0.364190 0.931325i \(-0.381346\pi\)
\(828\) 0 0
\(829\) 14.4270 8.32945i 0.501072 0.289294i −0.228084 0.973641i \(-0.573246\pi\)
0.729156 + 0.684347i \(0.239913\pi\)
\(830\) 0 0
\(831\) 4.56118 7.90020i 0.158226 0.274055i
\(832\) 0 0
\(833\) 0.110143 + 2.70704i 0.00381624 + 0.0937933i
\(834\) 0 0
\(835\) 5.19849 + 3.00135i 0.179901 + 0.103866i
\(836\) 0 0
\(837\) 4.73346 + 8.19859i 0.163612 + 0.283385i
\(838\) 0 0
\(839\) −0.646377 −0.0223154 −0.0111577 0.999938i \(-0.503552\pi\)
−0.0111577 + 0.999938i \(0.503552\pi\)
\(840\) 0 0
\(841\) 60.7422 2.09456
\(842\) 0 0
\(843\) −2.39167 4.14249i −0.0823734 0.142675i
\(844\) 0 0
\(845\) −10.9206 6.30502i −0.375681 0.216899i
\(846\) 0 0
\(847\) 0.339574 + 16.6986i 0.0116679 + 0.573772i
\(848\) 0 0
\(849\) −0.176678 + 0.306014i −0.00606356 + 0.0105024i
\(850\) 0 0
\(851\) 14.3905 8.30835i 0.493300 0.284807i
\(852\) 0 0
\(853\) 39.5869i 1.35543i −0.735324 0.677715i \(-0.762970\pi\)
0.735324 0.677715i \(-0.237030\pi\)
\(854\) 0 0
\(855\) 3.52151i 0.120433i
\(856\) 0 0
\(857\) 24.2101 13.9777i 0.827003 0.477470i −0.0258226 0.999667i \(-0.508221\pi\)
0.852825 + 0.522196i \(0.174887\pi\)
\(858\) 0 0
\(859\) −4.44220 + 7.69412i −0.151566 + 0.262520i −0.931803 0.362964i \(-0.881765\pi\)
0.780237 + 0.625484i \(0.215098\pi\)
\(860\) 0 0
\(861\) 6.13419 11.1419i 0.209053 0.379715i
\(862\) 0 0
\(863\) −43.5484 25.1427i −1.48241 0.855868i −0.482606 0.875838i \(-0.660310\pi\)
−0.999801 + 0.0199703i \(0.993643\pi\)
\(864\) 0 0
\(865\) −4.64693 8.04871i −0.158000 0.273665i
\(866\) 0 0
\(867\) −16.8502 −0.572263
\(868\) 0 0
\(869\) 2.59343 0.0879760
\(870\) 0 0
\(871\) 2.59694 + 4.49804i 0.0879941 + 0.152410i
\(872\) 0 0
\(873\) 2.53288 + 1.46236i 0.0857248 + 0.0494933i
\(874\) 0 0
\(875\) −1.36919 2.26392i −0.0462870 0.0765344i
\(876\) 0 0
\(877\) 0.478486 0.828762i 0.0161573 0.0279853i −0.857834 0.513927i \(-0.828190\pi\)
0.873991 + 0.485942i \(0.161523\pi\)
\(878\) 0 0
\(879\) −15.6838 + 9.05504i −0.529001 + 0.305419i
\(880\) 0 0
\(881\) 58.9964i 1.98764i 0.111000 + 0.993820i \(0.464594\pi\)
−0.111000 + 0.993820i \(0.535406\pi\)
\(882\) 0 0
\(883\) 18.1642i 0.611274i 0.952148 + 0.305637i \(0.0988694\pi\)
−0.952148 + 0.305637i \(0.901131\pi\)
\(884\) 0 0
\(885\) 3.99737 2.30789i 0.134370 0.0775787i
\(886\) 0 0
\(887\) 7.97320 13.8100i 0.267714 0.463694i −0.700557 0.713596i \(-0.747065\pi\)
0.968271 + 0.249902i \(0.0803985\pi\)
\(888\) 0 0
\(889\) −13.3611 22.0922i −0.448115 0.740948i
\(890\) 0 0
\(891\) −1.87494 1.08250i −0.0628129 0.0362650i
\(892\) 0 0
\(893\) 1.52462 + 2.64072i 0.0510195 + 0.0883683i
\(894\) 0 0
\(895\) 12.6956 0.424369
\(896\) 0 0
\(897\) 2.79164 0.0932101
\(898\) 0 0
\(899\) −44.8411 77.6671i −1.49554 2.59034i
\(900\) 0 0
\(901\) −4.44820 2.56817i −0.148191 0.0855582i
\(902\) 0 0
\(903\) 11.1709 20.2904i 0.371745 0.675223i
\(904\) 0 0
\(905\) 6.40193 11.0885i 0.212807 0.368593i
\(906\) 0 0
\(907\) −30.2636 + 17.4727i −1.00489 + 0.580172i −0.909691 0.415287i \(-0.863681\pi\)
−0.0951964 + 0.995459i \(0.530348\pi\)
\(908\) 0 0
\(909\) 11.6732i 0.387175i
\(910\) 0 0
\(911\) 25.7541i 0.853270i 0.904424 + 0.426635i \(0.140301\pi\)
−0.904424 + 0.426635i \(0.859699\pi\)
\(912\) 0 0
\(913\) −0.885278 + 0.511115i −0.0292984 + 0.0169154i
\(914\) 0 0
\(915\) 2.35940 4.08660i 0.0779994 0.135099i
\(916\) 0 0
\(917\) 0.667280 + 32.8136i 0.0220355 + 1.08360i
\(918\) 0 0
\(919\) 13.7854 + 7.95898i 0.454737 + 0.262543i 0.709829 0.704374i \(-0.248772\pi\)
−0.255092 + 0.966917i \(0.582106\pi\)
\(920\) 0 0
\(921\) −4.47276 7.74705i −0.147382 0.255274i
\(922\) 0 0
\(923\) 1.02522 0.0337454
\(924\) 0 0
\(925\) 3.71703 0.122215
\(926\) 0 0
\(927\) −0.0474683 0.0822176i −0.00155907 0.00270038i
\(928\) 0 0
\(929\) 5.43070 + 3.13542i 0.178175 + 0.102870i 0.586435 0.809996i \(-0.300531\pi\)
−0.408260 + 0.912866i \(0.633864\pi\)
\(930\) 0 0
\(931\) 13.1830 + 20.8293i 0.432055 + 0.682653i
\(932\) 0 0
\(933\) −11.3699 + 19.6932i −0.372233 + 0.644727i
\(934\) 0 0
\(935\) 0.725677 0.418970i 0.0237322 0.0137018i
\(936\) 0 0
\(937\) 54.4941i 1.78024i −0.455722 0.890122i \(-0.650619\pi\)
0.455722 0.890122i \(-0.349381\pi\)
\(938\) 0 0
\(939\) 2.32399i 0.0758404i
\(940\) 0 0
\(941\) 7.19924 4.15649i 0.234689 0.135498i −0.378045 0.925787i \(-0.623403\pi\)
0.612733 + 0.790290i \(0.290070\pi\)
\(942\) 0 0
\(943\) 10.7453 18.6114i 0.349916 0.606072i
\(944\) 0 0
\(945\) 2.64520 0.0537914i 0.0860485 0.00174983i
\(946\) 0 0
\(947\) −36.4305 21.0332i −1.18383 0.683487i −0.226935 0.973910i \(-0.572871\pi\)
−0.956898 + 0.290423i \(0.906204\pi\)
\(948\) 0 0
\(949\) −5.13542 8.89481i −0.166703 0.288738i
\(950\) 0 0
\(951\) −6.41591 −0.208050
\(952\) 0 0
\(953\) −22.1029 −0.715983 −0.357992 0.933725i \(-0.616538\pi\)
−0.357992 + 0.933725i \(0.616538\pi\)
\(954\) 0 0
\(955\) −12.7349 22.0574i −0.412090 0.713762i
\(956\) 0 0
\(957\) 17.7618 + 10.2548i 0.574156 + 0.331489i
\(958\) 0 0
\(959\) −17.3048 9.52720i −0.558803 0.307649i
\(960\) 0 0
\(961\) −29.3112 + 50.7685i −0.945523 + 1.63769i
\(962\) 0 0
\(963\) −10.1493 + 5.85968i −0.327055 + 0.188826i
\(964\) 0 0
\(965\) 5.51451i 0.177518i
\(966\) 0 0
\(967\) 15.6608i 0.503618i −0.967777 0.251809i \(-0.918975\pi\)
0.967777 0.251809i \(-0.0810254\pi\)
\(968\) 0 0
\(969\) 1.18036 0.681483i 0.0379187 0.0218924i
\(970\) 0 0
\(971\) −14.4680 + 25.0594i −0.464301 + 0.804193i −0.999170 0.0407421i \(-0.987028\pi\)
0.534869 + 0.844935i \(0.320361\pi\)
\(972\) 0 0
\(973\) −34.9812 + 21.1561i −1.12145 + 0.678235i
\(974\) 0 0
\(975\) 0.540805 + 0.312234i 0.0173196 + 0.00999949i
\(976\) 0 0
\(977\) 16.1804 + 28.0253i 0.517657 + 0.896608i 0.999790 + 0.0205097i \(0.00652890\pi\)
−0.482133 + 0.876098i \(0.660138\pi\)
\(978\) 0 0
\(979\) 12.4997 0.399491
\(980\) 0 0
\(981\) −14.0404 −0.448275
\(982\) 0 0
\(983\) 3.87039 + 6.70370i 0.123446 + 0.213815i 0.921124 0.389268i \(-0.127272\pi\)
−0.797678 + 0.603083i \(0.793939\pi\)
\(984\) 0 0
\(985\) 15.7019 + 9.06550i 0.500304 + 0.288851i
\(986\) 0 0
\(987\) 1.96030 1.18556i 0.0623971 0.0377369i
\(988\) 0 0
\(989\) 19.5682 33.8931i 0.622232 1.07774i
\(990\) 0 0
\(991\) 27.5944 15.9317i 0.876566 0.506086i 0.00704159 0.999975i \(-0.497759\pi\)
0.869525 + 0.493889i \(0.164425\pi\)
\(992\) 0 0
\(993\) 15.1805i 0.481739i
\(994\) 0 0
\(995\) 25.4188i 0.805829i
\(996\) 0 0
\(997\) −5.13220 + 2.96307i −0.162538 + 0.0938415i −0.579063 0.815283i \(-0.696581\pi\)
0.416524 + 0.909125i \(0.363248\pi\)
\(998\) 0 0
\(999\) −1.85852 + 3.21904i −0.0588008 + 0.101846i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.2.dx.h.271.3 yes 12
4.3 odd 2 1680.2.dx.f.271.1 yes 12
7.3 odd 6 1680.2.dx.f.31.1 12
28.3 even 6 inner 1680.2.dx.h.31.3 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1680.2.dx.f.31.1 12 7.3 odd 6
1680.2.dx.f.271.1 yes 12 4.3 odd 2
1680.2.dx.h.31.3 yes 12 28.3 even 6 inner
1680.2.dx.h.271.3 yes 12 1.1 even 1 trivial