Properties

Label 1650.4
Level 1650
Weight 4
Dimension 48940
Nonzero newspaces 42
Sturm bound 576000
Trace bound 13

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1650 = 2 \cdot 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 42 \)
Sturm bound: \(576000\)
Trace bound: \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(1650))\).

Total New Old
Modular forms 218240 48940 169300
Cusp forms 213760 48940 164820
Eisenstein series 4480 0 4480

Trace form

\( 48940 q - 12 q^{2} + 38 q^{3} + 24 q^{4} + 20 q^{5} - 30 q^{6} + 24 q^{7} - 48 q^{8} + 214 q^{9} - 104 q^{10} + 300 q^{11} - 24 q^{12} - 300 q^{13} - 104 q^{14} - 512 q^{15} - 416 q^{16} + 896 q^{17} - 42 q^{18}+ \cdots - 11630 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(1650))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1650.4.a \(\chi_{1650}(1, \cdot)\) 1650.4.a.a 1 1
1650.4.a.b 1
1650.4.a.c 1
1650.4.a.d 1
1650.4.a.e 1
1650.4.a.f 1
1650.4.a.g 1
1650.4.a.h 1
1650.4.a.i 1
1650.4.a.j 1
1650.4.a.k 1
1650.4.a.l 1
1650.4.a.m 1
1650.4.a.n 1
1650.4.a.o 1
1650.4.a.p 1
1650.4.a.q 2
1650.4.a.r 2
1650.4.a.s 2
1650.4.a.t 2
1650.4.a.u 2
1650.4.a.v 2
1650.4.a.w 2
1650.4.a.x 2
1650.4.a.y 2
1650.4.a.z 2
1650.4.a.ba 2
1650.4.a.bb 2
1650.4.a.bc 2
1650.4.a.bd 2
1650.4.a.be 2
1650.4.a.bf 2
1650.4.a.bg 3
1650.4.a.bh 3
1650.4.a.bi 3
1650.4.a.bj 3
1650.4.a.bk 3
1650.4.a.bl 3
1650.4.a.bm 3
1650.4.a.bn 3
1650.4.a.bo 3
1650.4.a.bp 3
1650.4.a.bq 4
1650.4.a.br 4
1650.4.a.bs 5
1650.4.a.bt 5
1650.4.c \(\chi_{1650}(199, \cdot)\) 1650.4.c.a 2 1
1650.4.c.b 2
1650.4.c.c 2
1650.4.c.d 2
1650.4.c.e 2
1650.4.c.f 2
1650.4.c.g 2
1650.4.c.h 2
1650.4.c.i 2
1650.4.c.j 2
1650.4.c.k 2
1650.4.c.l 2
1650.4.c.m 2
1650.4.c.n 2
1650.4.c.o 4
1650.4.c.p 4
1650.4.c.q 4
1650.4.c.r 4
1650.4.c.s 4
1650.4.c.t 4
1650.4.c.u 4
1650.4.c.v 4
1650.4.c.w 4
1650.4.c.x 4
1650.4.c.y 6
1650.4.c.z 6
1650.4.c.ba 8
1650.4.d \(\chi_{1650}(1451, \cdot)\) n/a 228 1
1650.4.f \(\chi_{1650}(1649, \cdot)\) n/a 216 1
1650.4.j \(\chi_{1650}(1343, \cdot)\) n/a 360 2
1650.4.l \(\chi_{1650}(43, \cdot)\) n/a 216 2
1650.4.m \(\chi_{1650}(361, \cdot)\) n/a 720 4
1650.4.n \(\chi_{1650}(301, \cdot)\) n/a 456 4
1650.4.o \(\chi_{1650}(31, \cdot)\) n/a 720 4
1650.4.p \(\chi_{1650}(421, \cdot)\) n/a 720 4
1650.4.q \(\chi_{1650}(181, \cdot)\) n/a 720 4
1650.4.r \(\chi_{1650}(331, \cdot)\) n/a 592 4
1650.4.t \(\chi_{1650}(131, \cdot)\) n/a 1440 4
1650.4.u \(\chi_{1650}(529, \cdot)\) n/a 608 4
1650.4.x \(\chi_{1650}(959, \cdot)\) n/a 1440 4
1650.4.bb \(\chi_{1650}(479, \cdot)\) n/a 1440 4
1650.4.be \(\chi_{1650}(29, \cdot)\) n/a 1440 4
1650.4.bf \(\chi_{1650}(149, \cdot)\) n/a 864 4
1650.4.bk \(\chi_{1650}(239, \cdot)\) n/a 1440 4
1650.4.bm \(\chi_{1650}(281, \cdot)\) n/a 1440 4
1650.4.bn \(\chi_{1650}(229, \cdot)\) n/a 720 4
1650.4.bp \(\chi_{1650}(169, \cdot)\) n/a 720 4
1650.4.br \(\chi_{1650}(41, \cdot)\) n/a 1440 4
1650.4.bu \(\chi_{1650}(101, \cdot)\) n/a 912 4
1650.4.bv \(\chi_{1650}(761, \cdot)\) n/a 1440 4
1650.4.by \(\chi_{1650}(49, \cdot)\) n/a 432 4
1650.4.bz \(\chi_{1650}(619, \cdot)\) n/a 720 4
1650.4.cc \(\chi_{1650}(379, \cdot)\) n/a 720 4
1650.4.ce \(\chi_{1650}(371, \cdot)\) n/a 1440 4
1650.4.ch \(\chi_{1650}(329, \cdot)\) n/a 1440 4
1650.4.cj \(\chi_{1650}(113, \cdot)\) n/a 2880 8
1650.4.ck \(\chi_{1650}(373, \cdot)\) n/a 1440 8
1650.4.cl \(\chi_{1650}(13, \cdot)\) n/a 1440 8
1650.4.cm \(\chi_{1650}(337, \cdot)\) n/a 1440 8
1650.4.cn \(\chi_{1650}(7, \cdot)\) n/a 864 8
1650.4.co \(\chi_{1650}(217, \cdot)\) n/a 1440 8
1650.4.cu \(\chi_{1650}(23, \cdot)\) n/a 2400 8
1650.4.cv \(\chi_{1650}(257, \cdot)\) n/a 1728 8
1650.4.cw \(\chi_{1650}(53, \cdot)\) n/a 2880 8
1650.4.cx \(\chi_{1650}(47, \cdot)\) n/a 2880 8
1650.4.cy \(\chi_{1650}(137, \cdot)\) n/a 2880 8
1650.4.df \(\chi_{1650}(73, \cdot)\) n/a 1440 8

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(1650))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(1650)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 24}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(55))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(66))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(110))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(150))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(165))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(275))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(330))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(550))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(825))\)\(^{\oplus 2}\)