Properties

Label 1650.2.j
Level $1650$
Weight $2$
Character orbit 1650.j
Rep. character $\chi_{1650}(1343,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $120$
Sturm bound $720$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1650 = 2 \cdot 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1650.j (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 15 \)
Character field: \(\Q(i)\)
Sturm bound: \(720\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1650, [\chi])\).

Total New Old
Modular forms 768 120 648
Cusp forms 672 120 552
Eisenstein series 96 0 96

Trace form

\( 120 q - 4 q^{3} - 16 q^{6} + 4 q^{12} - 16 q^{13} - 120 q^{16} + 16 q^{18} - 4 q^{27} + 16 q^{31} + 4 q^{33} + 16 q^{36} + 8 q^{37} - 24 q^{42} + 96 q^{46} + 4 q^{48} + 64 q^{51} + 16 q^{52} + 16 q^{58}+ \cdots + 88 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1650, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1650, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1650, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(150, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(165, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(330, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(825, [\chi])\)\(^{\oplus 2}\)