Properties

Label 1650.2.cn
Level $1650$
Weight $2$
Character orbit 1650.cn
Rep. character $\chi_{1650}(7,\cdot)$
Character field $\Q(\zeta_{20})$
Dimension $288$
Sturm bound $720$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1650 = 2 \cdot 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1650.cn (of order \(20\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 55 \)
Character field: \(\Q(\zeta_{20})\)
Sturm bound: \(720\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1650, [\chi])\).

Total New Old
Modular forms 3072 288 2784
Cusp forms 2688 288 2400
Eisenstein series 384 0 384

Trace form

\( 288 q - 40 q^{7} + 16 q^{11} + 72 q^{16} - 40 q^{17} - 4 q^{22} + 16 q^{23} + 32 q^{26} - 20 q^{28} + 32 q^{31} - 12 q^{33} + 72 q^{36} + 32 q^{37} - 80 q^{41} + 12 q^{42} + 80 q^{46} + 88 q^{47} + 160 q^{51}+ \cdots + 96 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1650, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1650, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1650, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(110, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(165, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(275, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(330, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(550, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(825, [\chi])\)\(^{\oplus 2}\)