Properties

Label 1650.2.cc
Level $1650$
Weight $2$
Character orbit 1650.cc
Rep. character $\chi_{1650}(379,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $240$
Sturm bound $720$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1650 = 2 \cdot 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1650.cc (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 275 \)
Character field: \(\Q(\zeta_{10})\)
Sturm bound: \(720\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1650, [\chi])\).

Total New Old
Modular forms 1472 240 1232
Cusp forms 1408 240 1168
Eisenstein series 64 0 64

Trace form

\( 240 q - 240 q^{4} + 8 q^{5} - 4 q^{6} + 30 q^{7} + 60 q^{9} - 6 q^{10} - 8 q^{11} - 4 q^{15} + 240 q^{16} - 20 q^{17} - 16 q^{19} - 8 q^{20} - 8 q^{21} + 10 q^{22} + 4 q^{24} + 34 q^{25} - 30 q^{28} + 8 q^{30}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1650, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1650, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1650, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(275, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(550, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(825, [\chi])\)\(^{\oplus 2}\)