Properties

Label 1632.2.dp
Level $1632$
Weight $2$
Character orbit 1632.dp
Rep. character $\chi_{1632}(91,\cdot)$
Character field $\Q(\zeta_{16})$
Dimension $1152$
Sturm bound $576$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1632 = 2^{5} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1632.dp (of order \(16\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 544 \)
Character field: \(\Q(\zeta_{16})\)
Sturm bound: \(576\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1632, [\chi])\).

Total New Old
Modular forms 2336 1152 1184
Cusp forms 2272 1152 1120
Eisenstein series 64 0 64

Trace form

\( 1152 q + 48 q^{22} + 16 q^{24} + 64 q^{26} + 32 q^{31} + 48 q^{40} - 48 q^{42} + 80 q^{44} + 16 q^{46} - 112 q^{50} + 112 q^{56} - 80 q^{68} + 64 q^{69} - 64 q^{70} - 128 q^{71} + 64 q^{76} - 176 q^{80}+ \cdots - 224 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1632, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1632, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1632, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(544, [\chi])\)\(^{\oplus 2}\)