Properties

Label 1620.2.i.n.541.1
Level $1620$
Weight $2$
Character 1620.541
Analytic conductor $12.936$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1620,2,Mod(541,1620)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1620, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1620.541");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1620 = 2^{2} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1620.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.9357651274\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 541.1
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1620.541
Dual form 1620.2.i.n.1081.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{5} +(-0.366025 + 0.633975i) q^{7} +O(q^{10})\) \(q+(0.500000 + 0.866025i) q^{5} +(-0.366025 + 0.633975i) q^{7} +(0.866025 - 1.50000i) q^{11} +(0.732051 + 1.26795i) q^{13} -1.26795 q^{17} +2.46410 q^{19} +(1.73205 + 3.00000i) q^{23} +(-0.500000 + 0.866025i) q^{25} +(2.13397 - 3.69615i) q^{29} +(3.96410 + 6.86603i) q^{31} -0.732051 q^{35} +4.19615 q^{37} +(0.401924 + 0.696152i) q^{41} +(-3.36603 + 5.83013i) q^{43} +(2.36603 - 4.09808i) q^{47} +(3.23205 + 5.59808i) q^{49} -10.7321 q^{53} +1.73205 q^{55} +(2.13397 + 3.69615i) q^{59} +(2.00000 - 3.46410i) q^{61} +(-0.732051 + 1.26795i) q^{65} +(7.19615 + 12.4641i) q^{67} -0.803848 q^{71} +10.1962 q^{73} +(0.633975 + 1.09808i) q^{77} +(-3.19615 + 5.53590i) q^{79} +(-4.56218 + 7.90192i) q^{83} +(-0.633975 - 1.09808i) q^{85} -5.19615 q^{89} -1.07180 q^{91} +(1.23205 + 2.13397i) q^{95} +(1.36603 - 2.36603i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{5} + 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{5} + 2 q^{7} - 4 q^{13} - 12 q^{17} - 4 q^{19} - 2 q^{25} + 12 q^{29} + 2 q^{31} + 4 q^{35} - 4 q^{37} + 12 q^{41} - 10 q^{43} + 6 q^{47} + 6 q^{49} - 36 q^{53} + 12 q^{59} + 8 q^{61} + 4 q^{65} + 8 q^{67} - 24 q^{71} + 20 q^{73} + 6 q^{77} + 8 q^{79} + 6 q^{83} - 6 q^{85} - 32 q^{91} - 2 q^{95} + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1620\mathbb{Z}\right)^\times\).

\(n\) \(811\) \(1297\) \(1541\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i
\(6\) 0 0
\(7\) −0.366025 + 0.633975i −0.138345 + 0.239620i −0.926870 0.375382i \(-0.877511\pi\)
0.788526 + 0.615002i \(0.210845\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.866025 1.50000i 0.261116 0.452267i −0.705422 0.708787i \(-0.749243\pi\)
0.966539 + 0.256520i \(0.0825760\pi\)
\(12\) 0 0
\(13\) 0.732051 + 1.26795i 0.203034 + 0.351666i 0.949505 0.313753i \(-0.101586\pi\)
−0.746470 + 0.665419i \(0.768253\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.26795 −0.307523 −0.153761 0.988108i \(-0.549139\pi\)
−0.153761 + 0.988108i \(0.549139\pi\)
\(18\) 0 0
\(19\) 2.46410 0.565304 0.282652 0.959223i \(-0.408786\pi\)
0.282652 + 0.959223i \(0.408786\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.73205 + 3.00000i 0.361158 + 0.625543i 0.988152 0.153481i \(-0.0490483\pi\)
−0.626994 + 0.779024i \(0.715715\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.13397 3.69615i 0.396269 0.686358i −0.596993 0.802246i \(-0.703638\pi\)
0.993262 + 0.115888i \(0.0369714\pi\)
\(30\) 0 0
\(31\) 3.96410 + 6.86603i 0.711974 + 1.23317i 0.964115 + 0.265484i \(0.0855318\pi\)
−0.252142 + 0.967690i \(0.581135\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.732051 −0.123739
\(36\) 0 0
\(37\) 4.19615 0.689843 0.344922 0.938631i \(-0.387905\pi\)
0.344922 + 0.938631i \(0.387905\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.401924 + 0.696152i 0.0627700 + 0.108721i 0.895703 0.444654i \(-0.146673\pi\)
−0.832933 + 0.553374i \(0.813340\pi\)
\(42\) 0 0
\(43\) −3.36603 + 5.83013i −0.513314 + 0.889086i 0.486567 + 0.873643i \(0.338249\pi\)
−0.999881 + 0.0154426i \(0.995084\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.36603 4.09808i 0.345120 0.597766i −0.640255 0.768162i \(-0.721171\pi\)
0.985376 + 0.170396i \(0.0545048\pi\)
\(48\) 0 0
\(49\) 3.23205 + 5.59808i 0.461722 + 0.799725i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −10.7321 −1.47416 −0.737080 0.675805i \(-0.763796\pi\)
−0.737080 + 0.675805i \(0.763796\pi\)
\(54\) 0 0
\(55\) 1.73205 0.233550
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.13397 + 3.69615i 0.277820 + 0.481198i 0.970843 0.239718i \(-0.0770548\pi\)
−0.693023 + 0.720916i \(0.743722\pi\)
\(60\) 0 0
\(61\) 2.00000 3.46410i 0.256074 0.443533i −0.709113 0.705095i \(-0.750904\pi\)
0.965187 + 0.261562i \(0.0842377\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.732051 + 1.26795i −0.0907997 + 0.157270i
\(66\) 0 0
\(67\) 7.19615 + 12.4641i 0.879150 + 1.52273i 0.852275 + 0.523094i \(0.175222\pi\)
0.0268747 + 0.999639i \(0.491444\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −0.803848 −0.0953992 −0.0476996 0.998862i \(-0.515189\pi\)
−0.0476996 + 0.998862i \(0.515189\pi\)
\(72\) 0 0
\(73\) 10.1962 1.19337 0.596685 0.802476i \(-0.296484\pi\)
0.596685 + 0.802476i \(0.296484\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.633975 + 1.09808i 0.0722481 + 0.125137i
\(78\) 0 0
\(79\) −3.19615 + 5.53590i −0.359595 + 0.622837i −0.987893 0.155136i \(-0.950419\pi\)
0.628298 + 0.777973i \(0.283752\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −4.56218 + 7.90192i −0.500764 + 0.867349i 0.499236 + 0.866466i \(0.333614\pi\)
−1.00000 0.000882500i \(0.999719\pi\)
\(84\) 0 0
\(85\) −0.633975 1.09808i −0.0687642 0.119103i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −5.19615 −0.550791 −0.275396 0.961331i \(-0.588809\pi\)
−0.275396 + 0.961331i \(0.588809\pi\)
\(90\) 0 0
\(91\) −1.07180 −0.112355
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.23205 + 2.13397i 0.126406 + 0.218941i
\(96\) 0 0
\(97\) 1.36603 2.36603i 0.138699 0.240233i −0.788305 0.615284i \(-0.789041\pi\)
0.927004 + 0.375051i \(0.122375\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 9.06218 15.6962i 0.901720 1.56183i 0.0764604 0.997073i \(-0.475638\pi\)
0.825260 0.564753i \(-0.191029\pi\)
\(102\) 0 0
\(103\) 1.19615 + 2.07180i 0.117860 + 0.204140i 0.918920 0.394445i \(-0.129063\pi\)
−0.801059 + 0.598585i \(0.795730\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −3.46410 −0.334887 −0.167444 0.985882i \(-0.553551\pi\)
−0.167444 + 0.985882i \(0.553551\pi\)
\(108\) 0 0
\(109\) 5.92820 0.567819 0.283909 0.958851i \(-0.408368\pi\)
0.283909 + 0.958851i \(0.408368\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 8.83013 + 15.2942i 0.830668 + 1.43876i 0.897509 + 0.440996i \(0.145375\pi\)
−0.0668404 + 0.997764i \(0.521292\pi\)
\(114\) 0 0
\(115\) −1.73205 + 3.00000i −0.161515 + 0.279751i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.464102 0.803848i 0.0425441 0.0736886i
\(120\) 0 0
\(121\) 4.00000 + 6.92820i 0.363636 + 0.629837i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −6.19615 −0.549820 −0.274910 0.961470i \(-0.588648\pi\)
−0.274910 + 0.961470i \(0.588648\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −6.86603 11.8923i −0.599887 1.03904i −0.992837 0.119476i \(-0.961879\pi\)
0.392950 0.919560i \(-0.371455\pi\)
\(132\) 0 0
\(133\) −0.901924 + 1.56218i −0.0782067 + 0.135458i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.19615 14.1962i 0.700245 1.21286i −0.268136 0.963381i \(-0.586408\pi\)
0.968380 0.249478i \(-0.0802590\pi\)
\(138\) 0 0
\(139\) 2.69615 + 4.66987i 0.228685 + 0.396093i 0.957419 0.288704i \(-0.0932242\pi\)
−0.728734 + 0.684797i \(0.759891\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.53590 0.212062
\(144\) 0 0
\(145\) 4.26795 0.354434
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(150\) 0 0
\(151\) −1.69615 + 2.93782i −0.138031 + 0.239077i −0.926751 0.375676i \(-0.877411\pi\)
0.788720 + 0.614752i \(0.210744\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3.96410 + 6.86603i −0.318404 + 0.551492i
\(156\) 0 0
\(157\) −3.36603 5.83013i −0.268638 0.465295i 0.699872 0.714268i \(-0.253240\pi\)
−0.968510 + 0.248973i \(0.919907\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −2.53590 −0.199857
\(162\) 0 0
\(163\) 15.2679 1.19588 0.597939 0.801542i \(-0.295986\pi\)
0.597939 + 0.801542i \(0.295986\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1.56218 2.70577i −0.120885 0.209379i 0.799232 0.601023i \(-0.205240\pi\)
−0.920117 + 0.391644i \(0.871907\pi\)
\(168\) 0 0
\(169\) 5.42820 9.40192i 0.417554 0.723225i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −12.1244 + 21.0000i −0.921798 + 1.59660i −0.125166 + 0.992136i \(0.539946\pi\)
−0.796632 + 0.604465i \(0.793387\pi\)
\(174\) 0 0
\(175\) −0.366025 0.633975i −0.0276689 0.0479240i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 12.1244 0.906217 0.453108 0.891455i \(-0.350315\pi\)
0.453108 + 0.891455i \(0.350315\pi\)
\(180\) 0 0
\(181\) −9.53590 −0.708798 −0.354399 0.935094i \(-0.615314\pi\)
−0.354399 + 0.935094i \(0.615314\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.09808 + 3.63397i 0.154254 + 0.267175i
\(186\) 0 0
\(187\) −1.09808 + 1.90192i −0.0802993 + 0.139082i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 9.52628 16.5000i 0.689297 1.19390i −0.282768 0.959188i \(-0.591253\pi\)
0.972065 0.234710i \(-0.0754140\pi\)
\(192\) 0 0
\(193\) −10.2942 17.8301i −0.740995 1.28344i −0.952043 0.305965i \(-0.901021\pi\)
0.211048 0.977476i \(-0.432312\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 13.8564 0.987228 0.493614 0.869681i \(-0.335676\pi\)
0.493614 + 0.869681i \(0.335676\pi\)
\(198\) 0 0
\(199\) −11.8564 −0.840478 −0.420239 0.907413i \(-0.638054\pi\)
−0.420239 + 0.907413i \(0.638054\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1.56218 + 2.70577i 0.109643 + 0.189908i
\(204\) 0 0
\(205\) −0.401924 + 0.696152i −0.0280716 + 0.0486214i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.13397 3.69615i 0.147610 0.255668i
\(210\) 0 0
\(211\) 3.03590 + 5.25833i 0.209000 + 0.361998i 0.951400 0.307959i \(-0.0996458\pi\)
−0.742400 + 0.669957i \(0.766313\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −6.73205 −0.459122
\(216\) 0 0
\(217\) −5.80385 −0.393991
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −0.928203 1.60770i −0.0624377 0.108145i
\(222\) 0 0
\(223\) −10.9282 + 18.9282i −0.731807 + 1.26753i 0.224304 + 0.974519i \(0.427989\pi\)
−0.956110 + 0.293007i \(0.905344\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −7.90192 + 13.6865i −0.524469 + 0.908407i 0.475125 + 0.879918i \(0.342403\pi\)
−0.999594 + 0.0284888i \(0.990930\pi\)
\(228\) 0 0
\(229\) −4.92820 8.53590i −0.325665 0.564068i 0.655982 0.754777i \(-0.272255\pi\)
−0.981647 + 0.190709i \(0.938921\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −6.58846 −0.431624 −0.215812 0.976435i \(-0.569240\pi\)
−0.215812 + 0.976435i \(0.569240\pi\)
\(234\) 0 0
\(235\) 4.73205 0.308685
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −7.73205 13.3923i −0.500145 0.866276i −1.00000 0.000167197i \(-0.999947\pi\)
0.499855 0.866109i \(-0.333387\pi\)
\(240\) 0 0
\(241\) 12.1603 21.0622i 0.783311 1.35673i −0.146692 0.989182i \(-0.546863\pi\)
0.930003 0.367552i \(-0.119804\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −3.23205 + 5.59808i −0.206488 + 0.357648i
\(246\) 0 0
\(247\) 1.80385 + 3.12436i 0.114776 + 0.198798i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 27.4641 1.73352 0.866759 0.498727i \(-0.166199\pi\)
0.866759 + 0.498727i \(0.166199\pi\)
\(252\) 0 0
\(253\) 6.00000 0.377217
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4.26795 7.39230i −0.266227 0.461119i 0.701657 0.712515i \(-0.252444\pi\)
−0.967884 + 0.251395i \(0.919111\pi\)
\(258\) 0 0
\(259\) −1.53590 + 2.66025i −0.0954361 + 0.165300i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −12.1244 + 21.0000i −0.747620 + 1.29492i 0.201341 + 0.979521i \(0.435470\pi\)
−0.948961 + 0.315394i \(0.897863\pi\)
\(264\) 0 0
\(265\) −5.36603 9.29423i −0.329632 0.570940i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −19.7321 −1.20308 −0.601542 0.798841i \(-0.705447\pi\)
−0.601542 + 0.798841i \(0.705447\pi\)
\(270\) 0 0
\(271\) −24.7846 −1.50556 −0.752779 0.658273i \(-0.771287\pi\)
−0.752779 + 0.658273i \(0.771287\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.866025 + 1.50000i 0.0522233 + 0.0904534i
\(276\) 0 0
\(277\) 9.56218 16.5622i 0.574536 0.995125i −0.421556 0.906802i \(-0.638516\pi\)
0.996092 0.0883226i \(-0.0281506\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2.66025 4.60770i 0.158697 0.274872i −0.775702 0.631100i \(-0.782604\pi\)
0.934399 + 0.356228i \(0.115937\pi\)
\(282\) 0 0
\(283\) −11.7321 20.3205i −0.697398 1.20793i −0.969366 0.245622i \(-0.921008\pi\)
0.271968 0.962306i \(-0.412326\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −0.588457 −0.0347355
\(288\) 0 0
\(289\) −15.3923 −0.905430
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3.29423 + 5.70577i 0.192451 + 0.333335i 0.946062 0.323986i \(-0.105023\pi\)
−0.753611 + 0.657321i \(0.771690\pi\)
\(294\) 0 0
\(295\) −2.13397 + 3.69615i −0.124245 + 0.215198i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2.53590 + 4.39230i −0.146655 + 0.254014i
\(300\) 0 0
\(301\) −2.46410 4.26795i −0.142028 0.246001i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4.00000 0.229039
\(306\) 0 0
\(307\) −12.1962 −0.696071 −0.348036 0.937481i \(-0.613151\pi\)
−0.348036 + 0.937481i \(0.613151\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −14.2583 24.6962i −0.808516 1.40039i −0.913892 0.405958i \(-0.866938\pi\)
0.105376 0.994432i \(-0.466395\pi\)
\(312\) 0 0
\(313\) −0.535898 + 0.928203i −0.0302908 + 0.0524651i −0.880773 0.473538i \(-0.842977\pi\)
0.850483 + 0.526003i \(0.176310\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 10.5622 18.2942i 0.593231 1.02751i −0.400563 0.916269i \(-0.631185\pi\)
0.993794 0.111237i \(-0.0354813\pi\)
\(318\) 0 0
\(319\) −3.69615 6.40192i −0.206945 0.358439i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −3.12436 −0.173844
\(324\) 0 0
\(325\) −1.46410 −0.0812137
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.73205 + 3.00000i 0.0954911 + 0.165395i
\(330\) 0 0
\(331\) 4.30385 7.45448i 0.236561 0.409735i −0.723164 0.690676i \(-0.757313\pi\)
0.959725 + 0.280941i \(0.0906464\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −7.19615 + 12.4641i −0.393168 + 0.680987i
\(336\) 0 0
\(337\) −7.12436 12.3397i −0.388088 0.672189i 0.604104 0.796905i \(-0.293531\pi\)
−0.992192 + 0.124717i \(0.960198\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 13.7321 0.743632
\(342\) 0 0
\(343\) −9.85641 −0.532196
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −16.0981 27.8827i −0.864190 1.49682i −0.867849 0.496828i \(-0.834498\pi\)
0.00365919 0.999993i \(-0.498835\pi\)
\(348\) 0 0
\(349\) 12.5000 21.6506i 0.669110 1.15893i −0.309044 0.951048i \(-0.600009\pi\)
0.978153 0.207884i \(-0.0666577\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −11.4904 + 19.9019i −0.611571 + 1.05927i 0.379404 + 0.925231i \(0.376129\pi\)
−0.990976 + 0.134042i \(0.957204\pi\)
\(354\) 0 0
\(355\) −0.401924 0.696152i −0.0213319 0.0369479i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 26.6603 1.40707 0.703537 0.710658i \(-0.251603\pi\)
0.703537 + 0.710658i \(0.251603\pi\)
\(360\) 0 0
\(361\) −12.9282 −0.680432
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 5.09808 + 8.83013i 0.266846 + 0.462190i
\(366\) 0 0
\(367\) 2.80385 4.85641i 0.146360 0.253502i −0.783520 0.621367i \(-0.786578\pi\)
0.929879 + 0.367865i \(0.119911\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 3.92820 6.80385i 0.203942 0.353238i
\(372\) 0 0
\(373\) −12.0263 20.8301i −0.622697 1.07854i −0.988981 0.148040i \(-0.952704\pi\)
0.366284 0.930503i \(-0.380630\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 6.24871 0.321825
\(378\) 0 0
\(379\) 11.4641 0.588871 0.294436 0.955671i \(-0.404868\pi\)
0.294436 + 0.955671i \(0.404868\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 15.1244 + 26.1962i 0.772818 + 1.33856i 0.936012 + 0.351967i \(0.114487\pi\)
−0.163194 + 0.986594i \(0.552180\pi\)
\(384\) 0 0
\(385\) −0.633975 + 1.09808i −0.0323103 + 0.0559631i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −10.2679 + 17.7846i −0.520606 + 0.901716i 0.479107 + 0.877756i \(0.340960\pi\)
−0.999713 + 0.0239591i \(0.992373\pi\)
\(390\) 0 0
\(391\) −2.19615 3.80385i −0.111064 0.192369i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −6.39230 −0.321632
\(396\) 0 0
\(397\) 2.67949 0.134480 0.0672399 0.997737i \(-0.478581\pi\)
0.0672399 + 0.997737i \(0.478581\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −13.3923 23.1962i −0.668780 1.15836i −0.978246 0.207450i \(-0.933484\pi\)
0.309466 0.950911i \(-0.399850\pi\)
\(402\) 0 0
\(403\) −5.80385 + 10.0526i −0.289110 + 0.500754i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.63397 6.29423i 0.180129 0.311993i
\(408\) 0 0
\(409\) −4.92820 8.53590i −0.243684 0.422073i 0.718077 0.695964i \(-0.245023\pi\)
−0.961761 + 0.273891i \(0.911689\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −3.12436 −0.153739
\(414\) 0 0
\(415\) −9.12436 −0.447897
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −7.26795 12.5885i −0.355063 0.614986i 0.632066 0.774914i \(-0.282207\pi\)
−0.987129 + 0.159928i \(0.948874\pi\)
\(420\) 0 0
\(421\) 13.8923 24.0622i 0.677070 1.17272i −0.298790 0.954319i \(-0.596583\pi\)
0.975859 0.218400i \(-0.0700837\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0.633975 1.09808i 0.0307523 0.0532645i
\(426\) 0 0
\(427\) 1.46410 + 2.53590i 0.0708528 + 0.122721i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −2.41154 −0.116160 −0.0580800 0.998312i \(-0.518498\pi\)
−0.0580800 + 0.998312i \(0.518498\pi\)
\(432\) 0 0
\(433\) 4.53590 0.217981 0.108991 0.994043i \(-0.465238\pi\)
0.108991 + 0.994043i \(0.465238\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4.26795 + 7.39230i 0.204164 + 0.353622i
\(438\) 0 0
\(439\) −13.6962 + 23.7224i −0.653682 + 1.13221i 0.328541 + 0.944490i \(0.393443\pi\)
−0.982223 + 0.187720i \(0.939890\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −20.3660 + 35.2750i −0.967619 + 1.67597i −0.265212 + 0.964190i \(0.585442\pi\)
−0.702407 + 0.711775i \(0.747891\pi\)
\(444\) 0 0
\(445\) −2.59808 4.50000i −0.123161 0.213320i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −0.124356 −0.00586871 −0.00293435 0.999996i \(-0.500934\pi\)
−0.00293435 + 0.999996i \(0.500934\pi\)
\(450\) 0 0
\(451\) 1.39230 0.0655611
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −0.535898 0.928203i −0.0251233 0.0435148i
\(456\) 0 0
\(457\) −5.90192 + 10.2224i −0.276080 + 0.478185i −0.970407 0.241475i \(-0.922369\pi\)
0.694327 + 0.719660i \(0.255702\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 10.7942 18.6962i 0.502737 0.870767i −0.497258 0.867603i \(-0.665660\pi\)
0.999995 0.00316371i \(-0.00100704\pi\)
\(462\) 0 0
\(463\) −9.19615 15.9282i −0.427381 0.740246i 0.569258 0.822159i \(-0.307231\pi\)
−0.996640 + 0.0819125i \(0.973897\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 15.8038 0.731315 0.365657 0.930750i \(-0.380844\pi\)
0.365657 + 0.930750i \(0.380844\pi\)
\(468\) 0 0
\(469\) −10.5359 −0.486503
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 5.83013 + 10.0981i 0.268070 + 0.464310i
\(474\) 0 0
\(475\) −1.23205 + 2.13397i −0.0565304 + 0.0979135i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 10.3301 17.8923i 0.471996 0.817520i −0.527491 0.849561i \(-0.676867\pi\)
0.999487 + 0.0320403i \(0.0102005\pi\)
\(480\) 0 0
\(481\) 3.07180 + 5.32051i 0.140062 + 0.242594i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.73205 0.124056
\(486\) 0 0
\(487\) −37.4641 −1.69766 −0.848830 0.528666i \(-0.822693\pi\)
−0.848830 + 0.528666i \(0.822693\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 3.86603 + 6.69615i 0.174471 + 0.302193i 0.939978 0.341235i \(-0.110845\pi\)
−0.765507 + 0.643428i \(0.777512\pi\)
\(492\) 0 0
\(493\) −2.70577 + 4.68653i −0.121862 + 0.211071i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.294229 0.509619i 0.0131980 0.0228595i
\(498\) 0 0
\(499\) −3.30385 5.72243i −0.147901 0.256171i 0.782551 0.622587i \(-0.213918\pi\)
−0.930451 + 0.366416i \(0.880585\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −0.679492 −0.0302970 −0.0151485 0.999885i \(-0.504822\pi\)
−0.0151485 + 0.999885i \(0.504822\pi\)
\(504\) 0 0
\(505\) 18.1244 0.806523
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −7.39230 12.8038i −0.327658 0.567521i 0.654389 0.756158i \(-0.272926\pi\)
−0.982047 + 0.188638i \(0.939593\pi\)
\(510\) 0 0
\(511\) −3.73205 + 6.46410i −0.165096 + 0.285955i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −1.19615 + 2.07180i −0.0527088 + 0.0912943i
\(516\) 0 0
\(517\) −4.09808 7.09808i −0.180233 0.312173i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 10.3923 0.455295 0.227648 0.973744i \(-0.426897\pi\)
0.227648 + 0.973744i \(0.426897\pi\)
\(522\) 0 0
\(523\) 24.3923 1.06660 0.533301 0.845926i \(-0.320952\pi\)
0.533301 + 0.845926i \(0.320952\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −5.02628 8.70577i −0.218948 0.379229i
\(528\) 0 0
\(529\) 5.50000 9.52628i 0.239130 0.414186i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −0.588457 + 1.01924i −0.0254889 + 0.0441481i
\(534\) 0 0
\(535\) −1.73205 3.00000i −0.0748831 0.129701i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 11.1962 0.482252
\(540\) 0 0
\(541\) −4.46410 −0.191927 −0.0959634 0.995385i \(-0.530593\pi\)
−0.0959634 + 0.995385i \(0.530593\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 2.96410 + 5.13397i 0.126968 + 0.219915i
\(546\) 0 0
\(547\) 18.3923 31.8564i 0.786398 1.36208i −0.141762 0.989901i \(-0.545277\pi\)
0.928160 0.372181i \(-0.121390\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 5.25833 9.10770i 0.224012 0.388001i
\(552\) 0 0
\(553\) −2.33975 4.05256i −0.0994961 0.172332i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 16.3923 0.694564 0.347282 0.937761i \(-0.387105\pi\)
0.347282 + 0.937761i \(0.387105\pi\)
\(558\) 0 0
\(559\) −9.85641 −0.416882
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −9.63397 16.6865i −0.406024 0.703254i 0.588416 0.808558i \(-0.299752\pi\)
−0.994440 + 0.105305i \(0.966418\pi\)
\(564\) 0 0
\(565\) −8.83013 + 15.2942i −0.371486 + 0.643433i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 2.47372 4.28461i 0.103704 0.179620i −0.809504 0.587114i \(-0.800264\pi\)
0.913208 + 0.407494i \(0.133597\pi\)
\(570\) 0 0
\(571\) 13.4282 + 23.2583i 0.561953 + 0.973331i 0.997326 + 0.0730808i \(0.0232831\pi\)
−0.435373 + 0.900250i \(0.643384\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −3.46410 −0.144463
\(576\) 0 0
\(577\) 22.1962 0.924038 0.462019 0.886870i \(-0.347125\pi\)
0.462019 + 0.886870i \(0.347125\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −3.33975 5.78461i −0.138556 0.239986i
\(582\) 0 0
\(583\) −9.29423 + 16.0981i −0.384928 + 0.666714i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −7.09808 + 12.2942i −0.292969 + 0.507437i −0.974510 0.224342i \(-0.927977\pi\)
0.681541 + 0.731780i \(0.261310\pi\)
\(588\) 0 0
\(589\) 9.76795 + 16.9186i 0.402481 + 0.697118i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −36.9282 −1.51646 −0.758230 0.651987i \(-0.773935\pi\)
−0.758230 + 0.651987i \(0.773935\pi\)
\(594\) 0 0
\(595\) 0.928203 0.0380526
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 22.7942 + 39.4808i 0.931347 + 1.61314i 0.781022 + 0.624504i \(0.214699\pi\)
0.150325 + 0.988637i \(0.451968\pi\)
\(600\) 0 0
\(601\) −5.16025 + 8.93782i −0.210491 + 0.364581i −0.951868 0.306507i \(-0.900840\pi\)
0.741377 + 0.671089i \(0.234173\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −4.00000 + 6.92820i −0.162623 + 0.281672i
\(606\) 0 0
\(607\) 14.2942 + 24.7583i 0.580185 + 1.00491i 0.995457 + 0.0952124i \(0.0303530\pi\)
−0.415272 + 0.909697i \(0.636314\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 6.92820 0.280285
\(612\) 0 0
\(613\) 3.60770 0.145713 0.0728567 0.997342i \(-0.476788\pi\)
0.0728567 + 0.997342i \(0.476788\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6.00000 + 10.3923i 0.241551 + 0.418378i 0.961156 0.276005i \(-0.0890106\pi\)
−0.719605 + 0.694383i \(0.755677\pi\)
\(618\) 0 0
\(619\) 5.00000 8.66025i 0.200967 0.348085i −0.747873 0.663842i \(-0.768925\pi\)
0.948840 + 0.315757i \(0.102258\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1.90192 3.29423i 0.0761990 0.131980i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −5.32051 −0.212143
\(630\) 0 0
\(631\) −13.9282 −0.554473 −0.277237 0.960802i \(-0.589419\pi\)
−0.277237 + 0.960802i \(0.589419\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −3.09808 5.36603i −0.122943 0.212944i
\(636\) 0 0
\(637\) −4.73205 + 8.19615i −0.187491 + 0.324743i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 11.5981 20.0885i 0.458096 0.793446i −0.540764 0.841174i \(-0.681865\pi\)
0.998860 + 0.0477281i \(0.0151981\pi\)
\(642\) 0 0
\(643\) 8.29423 + 14.3660i 0.327092 + 0.566541i 0.981934 0.189226i \(-0.0605978\pi\)
−0.654841 + 0.755767i \(0.727264\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −48.2487 −1.89685 −0.948426 0.316998i \(-0.897325\pi\)
−0.948426 + 0.316998i \(0.897325\pi\)
\(648\) 0 0
\(649\) 7.39230 0.290173
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 4.73205 + 8.19615i 0.185179 + 0.320740i 0.943637 0.330982i \(-0.107380\pi\)
−0.758458 + 0.651722i \(0.774047\pi\)
\(654\) 0 0
\(655\) 6.86603 11.8923i 0.268278 0.464671i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 4.73205 8.19615i 0.184335 0.319277i −0.759018 0.651070i \(-0.774320\pi\)
0.943352 + 0.331793i \(0.107654\pi\)
\(660\) 0 0
\(661\) 2.69615 + 4.66987i 0.104868 + 0.181637i 0.913684 0.406425i \(-0.133225\pi\)
−0.808816 + 0.588062i \(0.799891\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.80385 −0.0699502
\(666\) 0 0
\(667\) 14.7846 0.572462
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −3.46410 6.00000i −0.133730 0.231627i
\(672\) 0 0
\(673\) 8.80385 15.2487i 0.339363 0.587795i −0.644950 0.764225i \(-0.723122\pi\)
0.984313 + 0.176430i \(0.0564550\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 14.3205 24.8038i 0.550382 0.953289i −0.447865 0.894101i \(-0.647815\pi\)
0.998247 0.0591881i \(-0.0188512\pi\)
\(678\) 0 0
\(679\) 1.00000 + 1.73205i 0.0383765 + 0.0664700i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 14.5359 0.556201 0.278100 0.960552i \(-0.410295\pi\)
0.278100 + 0.960552i \(0.410295\pi\)
\(684\) 0 0
\(685\) 16.3923 0.626318
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −7.85641 13.6077i −0.299305 0.518412i
\(690\) 0 0
\(691\) 5.00000 8.66025i 0.190209 0.329452i −0.755110 0.655598i \(-0.772417\pi\)
0.945319 + 0.326146i \(0.105750\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −2.69615 + 4.66987i −0.102271 + 0.177138i
\(696\) 0 0
\(697\) −0.509619 0.882686i −0.0193032 0.0334341i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −42.1244 −1.59101 −0.795507 0.605944i \(-0.792796\pi\)
−0.795507 + 0.605944i \(0.792796\pi\)
\(702\) 0 0
\(703\) 10.3397 0.389971
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 6.63397 + 11.4904i 0.249496 + 0.432140i
\(708\) 0 0
\(709\) −8.73205 + 15.1244i −0.327939 + 0.568007i −0.982103 0.188346i \(-0.939687\pi\)
0.654164 + 0.756353i \(0.273021\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −13.7321 + 23.7846i −0.514269 + 0.890741i
\(714\) 0 0
\(715\) 1.26795 + 2.19615i 0.0474186 + 0.0821314i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −6.80385 −0.253741 −0.126870 0.991919i \(-0.540493\pi\)
−0.126870 + 0.991919i \(0.540493\pi\)
\(720\) 0 0
\(721\) −1.75129 −0.0652214
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2.13397 + 3.69615i 0.0792538 + 0.137272i
\(726\) 0 0
\(727\) −16.5885 + 28.7321i −0.615232 + 1.06561i 0.375112 + 0.926980i \(0.377604\pi\)
−0.990344 + 0.138633i \(0.955729\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 4.26795 7.39230i 0.157856 0.273414i
\(732\) 0 0
\(733\) 19.7846 + 34.2679i 0.730761 + 1.26572i 0.956558 + 0.291541i \(0.0941680\pi\)
−0.225797 + 0.974174i \(0.572499\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 24.9282 0.918242
\(738\) 0 0
\(739\) 36.1769 1.33079 0.665395 0.746492i \(-0.268263\pi\)
0.665395 + 0.746492i \(0.268263\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 18.2942 + 31.6865i 0.671150 + 1.16247i 0.977578 + 0.210572i \(0.0675328\pi\)
−0.306428 + 0.951894i \(0.599134\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1.26795 2.19615i 0.0463299 0.0802457i
\(750\) 0 0
\(751\) 0.392305 + 0.679492i 0.0143154 + 0.0247950i 0.873094 0.487551i \(-0.162110\pi\)
−0.858779 + 0.512346i \(0.828776\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −3.39230 −0.123459
\(756\) 0 0
\(757\) 0.392305 0.0142586 0.00712928 0.999975i \(-0.497731\pi\)
0.00712928 + 0.999975i \(0.497731\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 2.93782 + 5.08846i 0.106496 + 0.184456i 0.914348 0.404928i \(-0.132704\pi\)
−0.807852 + 0.589385i \(0.799370\pi\)
\(762\) 0 0
\(763\) −2.16987 + 3.75833i −0.0785547 + 0.136061i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −3.12436 + 5.41154i −0.112814 + 0.195399i
\(768\) 0 0
\(769\) 6.62436 + 11.4737i 0.238880 + 0.413753i 0.960393 0.278648i \(-0.0898863\pi\)
−0.721513 + 0.692401i \(0.756553\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0.339746 0.0122198 0.00610991 0.999981i \(-0.498055\pi\)
0.00610991 + 0.999981i \(0.498055\pi\)
\(774\) 0 0
\(775\) −7.92820 −0.284789
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0.990381 + 1.71539i 0.0354841 + 0.0614602i
\(780\) 0 0
\(781\) −0.696152 + 1.20577i −0.0249103 + 0.0431459i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 3.36603 5.83013i 0.120139 0.208086i
\(786\) 0 0
\(787\) 12.9019 + 22.3468i 0.459904 + 0.796577i 0.998955 0.0456959i \(-0.0145505\pi\)
−0.539051 + 0.842273i \(0.681217\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −12.9282 −0.459674
\(792\) 0 0
\(793\) 5.85641 0.207967
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 5.66025 + 9.80385i 0.200496 + 0.347270i 0.948688 0.316212i \(-0.102411\pi\)
−0.748192 + 0.663482i \(0.769078\pi\)