Properties

Label 160.10.a
Level $160$
Weight $10$
Character orbit 160.a
Rep. character $\chi_{160}(1,\cdot)$
Character field $\Q$
Dimension $36$
Newform subspaces $8$
Sturm bound $240$
Trace bound $9$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 160.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 8 \)
Sturm bound: \(240\)
Trace bound: \(9\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(160))\).

Total New Old
Modular forms 224 36 188
Cusp forms 208 36 172
Eisenstein series 16 0 16

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(55\)\(9\)\(46\)\(51\)\(9\)\(42\)\(4\)\(0\)\(4\)
\(+\)\(-\)\(-\)\(57\)\(10\)\(47\)\(53\)\(10\)\(43\)\(4\)\(0\)\(4\)
\(-\)\(+\)\(-\)\(57\)\(9\)\(48\)\(53\)\(9\)\(44\)\(4\)\(0\)\(4\)
\(-\)\(-\)\(+\)\(55\)\(8\)\(47\)\(51\)\(8\)\(43\)\(4\)\(0\)\(4\)
Plus space\(+\)\(110\)\(17\)\(93\)\(102\)\(17\)\(85\)\(8\)\(0\)\(8\)
Minus space\(-\)\(114\)\(19\)\(95\)\(106\)\(19\)\(87\)\(8\)\(0\)\(8\)

Trace form

\( 36 q + 180716 q^{9} + 389232 q^{13} + 484424 q^{17} - 4710088 q^{21} + 14062500 q^{25} + 3877832 q^{29} - 19095184 q^{33} + 38861424 q^{37} + 28061552 q^{41} + 13805000 q^{45} + 147824348 q^{49} + 41377168 q^{53}+ \cdots - 2553262376 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(160))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5
160.10.a.a 160.a 1.a $4$ $82.406$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 160.10.a.a \(0\) \(-176\) \(2500\) \(-1392\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-44-\beta _{1})q^{3}+5^{4}q^{5}+(-348+\cdots)q^{7}+\cdots\)
160.10.a.b 160.a 1.a $4$ $82.406$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 160.10.a.b \(0\) \(0\) \(-2500\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}-5^{4}q^{5}+(-14\beta _{1}-7\beta _{2}+\cdots)q^{7}+\cdots\)
160.10.a.c 160.a 1.a $4$ $82.406$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 160.10.a.c \(0\) \(0\) \(-2500\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}-5^{4}q^{5}+(34\beta _{1}-\beta _{2})q^{7}+\cdots\)
160.10.a.d 160.a 1.a $4$ $82.406$ \(\Q(\sqrt{7}, \sqrt{418})\) None 160.10.a.d \(0\) \(0\) \(2500\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+5^{4}q^{5}+(-8\beta _{1}+9\beta _{2})q^{7}+\cdots\)
160.10.a.e 160.a 1.a $4$ $82.406$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 160.10.a.a \(0\) \(176\) \(2500\) \(1392\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(44+\beta _{1})q^{3}+5^{4}q^{5}+(348-14\beta _{1}+\cdots)q^{7}+\cdots\)
160.10.a.f 160.a 1.a $5$ $82.406$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 160.10.a.f \(0\) \(-14\) \(-3125\) \(3410\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-3+\beta _{1})q^{3}-5^{4}q^{5}+(683-3\beta _{1}+\cdots)q^{7}+\cdots\)
160.10.a.g 160.a 1.a $5$ $82.406$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 160.10.a.f \(0\) \(14\) \(-3125\) \(-3410\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(3-\beta _{1})q^{3}-5^{4}q^{5}+(-683+3\beta _{1}+\cdots)q^{7}+\cdots\)
160.10.a.h 160.a 1.a $6$ $82.406$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 160.10.a.h \(0\) \(0\) \(3750\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+5^{4}q^{5}+(3\beta _{1}-\beta _{2})q^{7}+(11920+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(160))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_0(160)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 10}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 5}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 2}\)