Defining parameters
Level: | \( N \) | \(=\) | \( 160 = 2^{5} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 160.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 8 \) | ||
Sturm bound: | \(240\) | ||
Trace bound: | \(9\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(160))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 224 | 36 | 188 |
Cusp forms | 208 | 36 | 172 |
Eisenstein series | 16 | 0 | 16 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||
\(+\) | \(+\) | \(+\) | \(55\) | \(9\) | \(46\) | \(51\) | \(9\) | \(42\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(-\) | \(-\) | \(57\) | \(10\) | \(47\) | \(53\) | \(10\) | \(43\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(+\) | \(-\) | \(57\) | \(9\) | \(48\) | \(53\) | \(9\) | \(44\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(-\) | \(+\) | \(55\) | \(8\) | \(47\) | \(51\) | \(8\) | \(43\) | \(4\) | \(0\) | \(4\) | |||
Plus space | \(+\) | \(110\) | \(17\) | \(93\) | \(102\) | \(17\) | \(85\) | \(8\) | \(0\) | \(8\) | ||||
Minus space | \(-\) | \(114\) | \(19\) | \(95\) | \(106\) | \(19\) | \(87\) | \(8\) | \(0\) | \(8\) |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(160))\) into newform subspaces
Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(160))\) into lower level spaces
\( S_{10}^{\mathrm{old}}(\Gamma_0(160)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 10}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 5}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 2}\)