Properties

Label 159.2
Level 159
Weight 2
Dimension 649
Nonzero newspaces 6
Newform subspaces 8
Sturm bound 3744
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 159 = 3 \cdot 53 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 8 \)
Sturm bound: \(3744\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(159))\).

Total New Old
Modular forms 1040 753 287
Cusp forms 833 649 184
Eisenstein series 207 104 103

Trace form

\( 649 q - 3 q^{2} - 27 q^{3} - 59 q^{4} - 6 q^{5} - 29 q^{6} - 60 q^{7} - 15 q^{8} - 27 q^{9} - 70 q^{10} - 12 q^{11} - 33 q^{12} - 66 q^{13} - 24 q^{14} - 32 q^{15} - 83 q^{16} - 18 q^{17} - 29 q^{18} - 72 q^{19}+ \cdots + 66 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(159))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
159.2.a \(\chi_{159}(1, \cdot)\) 159.2.a.a 4 1
159.2.a.b 5
159.2.c \(\chi_{159}(52, \cdot)\) 159.2.c.a 8 1
159.2.f \(\chi_{159}(23, \cdot)\) 159.2.f.a 32 2
159.2.g \(\chi_{159}(10, \cdot)\) 159.2.g.a 60 12
159.2.g.b 60
159.2.i \(\chi_{159}(4, \cdot)\) 159.2.i.a 96 12
159.2.k \(\chi_{159}(2, \cdot)\) 159.2.k.a 384 24

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(159))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(159)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(53))\)\(^{\oplus 2}\)