Defining parameters
Level: | \( N \) | \(=\) | \( 1589 = 7 \cdot 227 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1589.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(304\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1589))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 154 | 113 | 41 |
Cusp forms | 151 | 113 | 38 |
Eisenstein series | 3 | 0 | 3 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(7\) | \(227\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||
\(+\) | \(+\) | \(+\) | \(27\) | \(22\) | \(5\) | \(27\) | \(22\) | \(5\) | \(0\) | \(0\) | \(0\) | |||
\(+\) | \(-\) | \(-\) | \(50\) | \(35\) | \(15\) | \(49\) | \(35\) | \(14\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(-\) | \(40\) | \(34\) | \(6\) | \(39\) | \(34\) | \(5\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(+\) | \(37\) | \(22\) | \(15\) | \(36\) | \(22\) | \(14\) | \(1\) | \(0\) | \(1\) | |||
Plus space | \(+\) | \(64\) | \(44\) | \(20\) | \(63\) | \(44\) | \(19\) | \(1\) | \(0\) | \(1\) | ||||
Minus space | \(-\) | \(90\) | \(69\) | \(21\) | \(88\) | \(69\) | \(19\) | \(2\) | \(0\) | \(2\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1589))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 7 | 227 | |||||||
1589.2.a.a | $22$ | $12.688$ | None | \(-3\) | \(-3\) | \(1\) | \(-22\) | $+$ | $+$ | |||
1589.2.a.b | $22$ | $12.688$ | None | \(-1\) | \(-11\) | \(-11\) | \(22\) | $-$ | $-$ | |||
1589.2.a.c | $34$ | $12.688$ | None | \(1\) | \(11\) | \(11\) | \(34\) | $-$ | $+$ | |||
1589.2.a.d | $35$ | $12.688$ | None | \(2\) | \(3\) | \(-7\) | \(-35\) | $+$ | $-$ |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1589))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1589)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(227))\)\(^{\oplus 2}\)