Properties

Label 1589.2.a
Level $1589$
Weight $2$
Character orbit 1589.a
Rep. character $\chi_{1589}(1,\cdot)$
Character field $\Q$
Dimension $113$
Newform subspaces $4$
Sturm bound $304$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1589 = 7 \cdot 227 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1589.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(304\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1589))\).

Total New Old
Modular forms 154 113 41
Cusp forms 151 113 38
Eisenstein series 3 0 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(7\)\(227\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(27\)\(22\)\(5\)\(27\)\(22\)\(5\)\(0\)\(0\)\(0\)
\(+\)\(-\)\(-\)\(50\)\(35\)\(15\)\(49\)\(35\)\(14\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(40\)\(34\)\(6\)\(39\)\(34\)\(5\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(37\)\(22\)\(15\)\(36\)\(22\)\(14\)\(1\)\(0\)\(1\)
Plus space\(+\)\(64\)\(44\)\(20\)\(63\)\(44\)\(19\)\(1\)\(0\)\(1\)
Minus space\(-\)\(90\)\(69\)\(21\)\(88\)\(69\)\(19\)\(2\)\(0\)\(2\)

Trace form

\( 113 q - q^{2} + 115 q^{4} - 6 q^{5} - q^{7} - 9 q^{8} + 117 q^{9} + 6 q^{10} - 4 q^{11} - 6 q^{13} + q^{14} + 4 q^{15} + 123 q^{16} - 2 q^{17} - 21 q^{18} + 20 q^{19} - 42 q^{20} - 4 q^{22} + 8 q^{24}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1589))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 7 227
1589.2.a.a 1589.a 1.a $22$ $12.688$ None 1589.2.a.a \(-3\) \(-3\) \(1\) \(-22\) $+$ $+$ $\mathrm{SU}(2)$
1589.2.a.b 1589.a 1.a $22$ $12.688$ None 1589.2.a.b \(-1\) \(-11\) \(-11\) \(22\) $-$ $-$ $\mathrm{SU}(2)$
1589.2.a.c 1589.a 1.a $34$ $12.688$ None 1589.2.a.c \(1\) \(11\) \(11\) \(34\) $-$ $+$ $\mathrm{SU}(2)$
1589.2.a.d 1589.a 1.a $35$ $12.688$ None 1589.2.a.d \(2\) \(3\) \(-7\) \(-35\) $+$ $-$ $\mathrm{SU}(2)$

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1589))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(1589)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(227))\)\(^{\oplus 2}\)