Defining parameters
| Level: | \( N \) | \(=\) | \( 15840 = 2^{5} \cdot 3^{2} \cdot 5 \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 15840.ge (of order \(10\) and degree \(4\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 264 \) |
| Character field: | \(\Q(\zeta_{10})\) | ||
| Sturm bound: | \(6912\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(15840, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 14080 | 768 | 13312 |
| Cusp forms | 13568 | 768 | 12800 |
| Eisenstein series | 512 | 0 | 512 |
Decomposition of \(S_{2}^{\mathrm{new}}(15840, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(15840, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(15840, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(264, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(792, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1056, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1320, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(3168, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(3960, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(5280, [\chi])\)\(^{\oplus 2}\)