Defining parameters
| Level: | \( N \) | \(=\) | \( 15840 = 2^{5} \cdot 3^{2} \cdot 5 \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 15840.dk (of order \(6\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 360 \) |
| Character field: | \(\Q(\zeta_{6})\) | ||
| Sturm bound: | \(6912\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(15840, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 6976 | 1440 | 5536 |
| Cusp forms | 6848 | 1440 | 5408 |
| Eisenstein series | 128 | 0 | 128 |
Decomposition of \(S_{2}^{\mathrm{new}}(15840, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(15840, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(15840, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(360, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1440, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(3960, [\chi])\)\(^{\oplus 3}\)