Properties

Label 1584.2.d
Level $1584$
Weight $2$
Character orbit 1584.d
Rep. character $\chi_{1584}(287,\cdot)$
Character field $\Q$
Dimension $20$
Newform subspaces $4$
Sturm bound $576$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1584 = 2^{4} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1584.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 12 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(576\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(5\), \(23\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1584, [\chi])\).

Total New Old
Modular forms 312 20 292
Cusp forms 264 20 244
Eisenstein series 48 0 48

Trace form

\( 20 q - 16 q^{13} - 20 q^{25} - 8 q^{37} - 4 q^{49} + 40 q^{61} - 16 q^{73} + 24 q^{85} - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1584, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1584.2.d.a 1584.d 12.b $2$ $12.648$ \(\Q(\sqrt{-2}) \) None 1584.2.d.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{5}-2\beta q^{7}-q^{11}+\beta q^{17}-2\beta q^{19}+\cdots\)
1584.2.d.b 1584.d 12.b $2$ $12.648$ \(\Q(\sqrt{-2}) \) None 1584.2.d.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{5}+2\beta q^{7}+q^{11}+\beta q^{17}+2\beta q^{19}+\cdots\)
1584.2.d.c 1584.d 12.b $8$ $12.648$ 8.0.1768034304.5 None 1584.2.d.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{4}q^{5}-\beta _{4}q^{7}-q^{11}+(-1+\beta _{3}+\cdots)q^{13}+\cdots\)
1584.2.d.d 1584.d 12.b $8$ $12.648$ 8.0.1768034304.5 None 1584.2.d.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{4}q^{5}+\beta _{4}q^{7}+q^{11}+(-1+\beta _{3}+\cdots)q^{13}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1584, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1584, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(132, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(396, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(528, [\chi])\)\(^{\oplus 2}\)