Defining parameters
| Level: | \( N \) | \(=\) | \( 1584 = 2^{4} \cdot 3^{2} \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1584.d (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 12 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 4 \) | ||
| Sturm bound: | \(576\) | ||
| Trace bound: | \(11\) | ||
| Distinguishing \(T_p\): | \(5\), \(23\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1584, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 312 | 20 | 292 |
| Cusp forms | 264 | 20 | 244 |
| Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1584, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 1584.2.d.a | $2$ | $12.648$ | \(\Q(\sqrt{-2}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta q^{5}-2\beta q^{7}-q^{11}+\beta q^{17}-2\beta q^{19}+\cdots\) |
| 1584.2.d.b | $2$ | $12.648$ | \(\Q(\sqrt{-2}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta q^{5}+2\beta q^{7}+q^{11}+\beta q^{17}+2\beta q^{19}+\cdots\) |
| 1584.2.d.c | $8$ | $12.648$ | 8.0.1768034304.5 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{4}q^{5}-\beta _{4}q^{7}-q^{11}+(-1+\beta _{3}+\cdots)q^{13}+\cdots\) |
| 1584.2.d.d | $8$ | $12.648$ | 8.0.1768034304.5 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{4}q^{5}+\beta _{4}q^{7}+q^{11}+(-1+\beta _{3}+\cdots)q^{13}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1584, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1584, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(132, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(396, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(528, [\chi])\)\(^{\oplus 2}\)