gp:[N,k,chi] = [15730,2,Mod(1,15730)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(15730, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("15730.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage:traces = [1,1,-1,1,1,-1,-1,1,-2,1,0,-1,1,-1,-1,1,1,-2,-3,1,1,0,6,-1,1,
1,5,-1,1,-1,-7,1,0,1,-1,-2,7,-3,-1,1,-6,1,-4,0,-2,6,6,-1,-6,1,-1,1,-5,
5,0,-1,3,1,-14,-1,-13,-7,2,1,1,0,8,1,-6,-1,-5,-2,-10,7,-1,-3,0,-1,-2,1,
1,-6,14,1,1,-4,-1,0,17,-2,-1,6,7,6,-3,-1,8,-6,0,1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
gp:f = lf[1] \\ Warning: the index may be different
sage:f.q_expansion() # note that sage often uses an isomorphic number field
gp:mfcoefs(f, 20)
\( p \) |
Sign
|
\(2\) |
\( -1 \) |
\(5\) |
\( -1 \) |
\(11\) |
\( -1 \) |
\(13\) |
\( -1 \) |
Inner twists of this newform have not been computed.
Twists of this newform have not been computed.