Properties

Label 15730.2.a.s
Level $15730$
Weight $2$
Character orbit 15730.a
Self dual yes
Analytic conductor $125.605$
Dimension $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [15730,2,Mod(1,15730)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(15730, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("15730.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 15730 = 2 \cdot 5 \cdot 11^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 15730.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,1,-2,1,1,-2,4,1,1,1,0,-2,-1,4,-2,1,6,1,-2,1,-8,0,6,-2,1,-1, 4,4,6,-2,2,1,0,6,4,1,2,-2,2,1,6,-8,-2,0,1,6,-12,-2,9,1,-12,-1,6,4,0,4, 4,6,6,-2,-2,2,4,1,-1,0,-4,6,-12,4,-6,1,10,2,-2,-2,0,2,4,1,-11,6,0,-8,6, -2,-12,0,-6,1,-4,6,-4,-12,-2,-2,2,9,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(125.604682379\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: not computed
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} - 2 q^{3} + q^{4} + q^{5} - 2 q^{6} + 4 q^{7} + q^{8} + q^{9} + q^{10} - 2 q^{12} - q^{13} + 4 q^{14} - 2 q^{15} + q^{16} + 6 q^{17} + q^{18} - 2 q^{19} + q^{20} - 8 q^{21} + 6 q^{23}+ \cdots + 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(11\) \( -1 \)
\(13\) \( +1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.