Properties

Label 1560.2.g
Level $1560$
Weight $2$
Character orbit 1560.g
Rep. character $\chi_{1560}(961,\cdot)$
Character field $\Q$
Dimension $28$
Newform subspaces $9$
Sturm bound $672$
Trace bound $17$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1560 = 2^{3} \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1560.g (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q\)
Newform subspaces: \( 9 \)
Sturm bound: \(672\)
Trace bound: \(17\)
Distinguishing \(T_p\): \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1560, [\chi])\).

Total New Old
Modular forms 352 28 324
Cusp forms 320 28 292
Eisenstein series 32 0 32

Trace form

\( 28 q - 4 q^{3} + 28 q^{9} - 4 q^{13} + 8 q^{17} - 16 q^{23} - 28 q^{25} - 4 q^{27} - 8 q^{29} - 8 q^{35} + 8 q^{39} + 48 q^{43} - 36 q^{49} - 16 q^{51} + 24 q^{53} + 8 q^{55} + 16 q^{61} + 12 q^{65} + 4 q^{75}+ \cdots + 16 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1560, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1560.2.g.a 1560.g 13.b $2$ $12.457$ \(\Q(\sqrt{-1}) \) None 1560.2.g.a \(0\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{3}+i q^{5}+2 i q^{7}+q^{9}+(2 i-3)q^{13}+\cdots\)
1560.2.g.b 1560.g 13.b $2$ $12.457$ \(\Q(\sqrt{-1}) \) None 1560.2.g.b \(0\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{3}-i q^{5}+2 i q^{7}+q^{9}-4 i q^{11}+\cdots\)
1560.2.g.c 1560.g 13.b $2$ $12.457$ \(\Q(\sqrt{-1}) \) None 1560.2.g.c \(0\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{3}-i q^{5}+4 i q^{7}+q^{9}+4 i q^{11}+\cdots\)
1560.2.g.d 1560.g 13.b $2$ $12.457$ \(\Q(\sqrt{-1}) \) None 1560.2.g.d \(0\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{3}-i q^{5}+3 i q^{7}+q^{9}-3 i q^{11}+\cdots\)
1560.2.g.e 1560.g 13.b $2$ $12.457$ \(\Q(\sqrt{-1}) \) None 1560.2.g.e \(0\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{3}-i q^{5}+q^{9}+6 i q^{11}+(3 i-2)q^{13}+\cdots\)
1560.2.g.f 1560.g 13.b $4$ $12.457$ \(\Q(i, \sqrt{41})\) None 1560.2.g.f \(0\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{3}-\beta _{2}q^{5}+(\beta _{1}-\beta _{2})q^{7}+q^{9}+\cdots\)
1560.2.g.g 1560.g 13.b $4$ $12.457$ \(\Q(\zeta_{12})\) None 1560.2.g.g \(0\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{3}-\beta_1 q^{5}+\beta_{2} q^{7}+q^{9}+(\beta_{2}+1)q^{13}+\cdots\)
1560.2.g.h 1560.g 13.b $4$ $12.457$ \(\Q(i, \sqrt{17})\) None 1560.2.g.h \(0\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{3}-\beta _{2}q^{5}+(\beta _{1}-\beta _{2})q^{7}+q^{9}+\cdots\)
1560.2.g.i 1560.g 13.b $6$ $12.457$ 6.0.3356224.1 None 1560.2.g.i \(0\) \(-6\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{3}-\beta _{1}q^{5}+(-2\beta _{1}+\beta _{4})q^{7}+q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1560, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1560, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(78, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(130, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(156, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(260, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(312, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(390, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(520, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(780, [\chi])\)\(^{\oplus 2}\)