Properties

Label 1560.2.by
Level $1560$
Weight $2$
Character orbit 1560.by
Rep. character $\chi_{1560}(1409,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $168$
Sturm bound $672$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1560 = 2^{3} \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1560.by (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 195 \)
Character field: \(\Q(i)\)
Sturm bound: \(672\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1560, [\chi])\).

Total New Old
Modular forms 704 168 536
Cusp forms 640 168 472
Eisenstein series 64 0 64

Trace form

\( 168 q - 8 q^{15} + 8 q^{31} + 40 q^{39} + 12 q^{45} - 48 q^{55} + 96 q^{61} - 16 q^{79} - 16 q^{81} + 72 q^{85} + 32 q^{91} - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1560, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1560, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1560, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(390, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(780, [\chi])\)\(^{\oplus 2}\)