Properties

Label 156.4.a
Level $156$
Weight $4$
Character orbit 156.a
Rep. character $\chi_{156}(1,\cdot)$
Character field $\Q$
Dimension $6$
Newform subspaces $4$
Sturm bound $112$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 156 = 2^{2} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 156.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(112\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(156))\).

Total New Old
Modular forms 90 6 84
Cusp forms 78 6 72
Eisenstein series 12 0 12

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(13\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(14\)\(0\)\(14\)\(12\)\(0\)\(12\)\(2\)\(0\)\(2\)
\(+\)\(+\)\(-\)\(-\)\(10\)\(0\)\(10\)\(8\)\(0\)\(8\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(+\)\(-\)\(9\)\(0\)\(9\)\(7\)\(0\)\(7\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(+\)\(13\)\(0\)\(13\)\(11\)\(0\)\(11\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(12\)\(2\)\(10\)\(11\)\(2\)\(9\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(+\)\(10\)\(1\)\(9\)\(9\)\(1\)\(8\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(+\)\(10\)\(2\)\(8\)\(9\)\(2\)\(7\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(12\)\(1\)\(11\)\(11\)\(1\)\(10\)\(1\)\(0\)\(1\)
Plus space\(+\)\(47\)\(3\)\(44\)\(41\)\(3\)\(38\)\(6\)\(0\)\(6\)
Minus space\(-\)\(43\)\(3\)\(40\)\(37\)\(3\)\(34\)\(6\)\(0\)\(6\)

Trace form

\( 6 q + 16 q^{5} - 20 q^{7} + 54 q^{9} - 56 q^{11} - 26 q^{13} + 84 q^{15} - 68 q^{17} - 36 q^{19} - 84 q^{21} + 24 q^{23} - 166 q^{25} + 300 q^{29} + 572 q^{31} - 24 q^{33} - 584 q^{35} - 228 q^{37} - 104 q^{41}+ \cdots - 504 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(156))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 13
156.4.a.a 156.a 1.a $1$ $9.204$ \(\Q\) None 156.4.a.a \(0\) \(-3\) \(-6\) \(-4\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}-6q^{5}-4q^{7}+9q^{9}+6^{2}q^{11}+\cdots\)
156.4.a.b 156.a 1.a $1$ $9.204$ \(\Q\) None 156.4.a.b \(0\) \(3\) \(-2\) \(-32\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}-2q^{5}-2^{5}q^{7}+9q^{9}-68q^{11}+\cdots\)
156.4.a.c 156.a 1.a $2$ $9.204$ \(\Q(\sqrt{22}) \) None 156.4.a.c \(0\) \(-6\) \(0\) \(8\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-3q^{3}+\beta q^{5}+(4-3\beta )q^{7}+9q^{9}+\cdots\)
156.4.a.d 156.a 1.a $2$ $9.204$ \(\Q(\sqrt{10}) \) None 156.4.a.d \(0\) \(6\) \(24\) \(8\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}+(12+\beta )q^{5}+(4-3\beta )q^{7}+9q^{9}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(156))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(156)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(78))\)\(^{\oplus 2}\)