Properties

Label 1540.2.h
Level $1540$
Weight $2$
Character orbit 1540.h
Rep. character $\chi_{1540}(461,\cdot)$
Character field $\Q$
Dimension $32$
Newform subspaces $1$
Sturm bound $576$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1540 = 2^{2} \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1540.h (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 77 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(576\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1540, [\chi])\).

Total New Old
Modular forms 300 32 268
Cusp forms 276 32 244
Eisenstein series 24 0 24

Trace form

\( 32 q - 36 q^{9} - 6 q^{11} - 4 q^{15} + 24 q^{23} - 32 q^{25} - 16 q^{37} + 16 q^{49} + 8 q^{53} + 8 q^{67} - 80 q^{71} - 8 q^{77} + 96 q^{81} - 52 q^{91} + 8 q^{93} - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1540, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1540.2.h.a 1540.h 77.b $32$ $12.297$ None 1540.2.h.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1540, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1540, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(77, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(154, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(308, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(385, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(770, [\chi])\)\(^{\oplus 2}\)