Defining parameters
Level: | \( N \) | \(=\) | \( 1539 = 3^{4} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 1539.o (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 171 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(180\) | ||
Trace bound: | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(1539, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 54 | 14 | 40 |
Cusp forms | 30 | 10 | 20 |
Eisenstein series | 24 | 4 | 20 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 10 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(1539, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
1539.1.o.a | $2$ | $0.768$ | \(\Q(\sqrt{-3}) \) | $D_{3}$ | \(\Q(\sqrt{-19}) \) | None | \(0\) | \(0\) | \(-2\) | \(1\) | \(q+\zeta_{6}^{2}q^{4}+\zeta_{6}^{2}q^{5}+\zeta_{6}q^{7}+\zeta_{6}q^{11}+\cdots\) |
1539.1.o.b | $2$ | $0.768$ | \(\Q(\sqrt{-3}) \) | $D_{2}$ | \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-19}) \) | \(\Q(\sqrt{57}) \) | \(0\) | \(0\) | \(0\) | \(2\) | \(q+\zeta_{6}^{2}q^{4}+\zeta_{6}q^{7}-\zeta_{6}q^{16}-q^{19}+\cdots\) |
1539.1.o.c | $2$ | $0.768$ | \(\Q(\sqrt{-3}) \) | $D_{3}$ | \(\Q(\sqrt{-19}) \) | None | \(0\) | \(0\) | \(2\) | \(1\) | \(q+\zeta_{6}^{2}q^{4}-\zeta_{6}^{2}q^{5}+\zeta_{6}q^{7}-\zeta_{6}q^{11}+\cdots\) |
1539.1.o.d | $4$ | $0.768$ | \(\Q(\zeta_{12})\) | $D_{6}$ | \(\Q(\sqrt{-19}) \) | None | \(0\) | \(0\) | \(0\) | \(-2\) | \(q-\zeta_{12}^{2}q^{4}+\zeta_{12}^{4}q^{7}+(-\zeta_{12}^{3}-\zeta_{12}^{5}+\cdots)q^{11}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(1539, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(1539, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(171, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(513, [\chi])\)\(^{\oplus 2}\)