Properties

Label 1539.1.o
Level $1539$
Weight $1$
Character orbit 1539.o
Rep. character $\chi_{1539}(379,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $10$
Newform subspaces $4$
Sturm bound $180$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1539 = 3^{4} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1539.o (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 171 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 4 \)
Sturm bound: \(180\)
Trace bound: \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(1539, [\chi])\).

Total New Old
Modular forms 54 14 40
Cusp forms 30 10 20
Eisenstein series 24 4 20

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 10 0 0 0

Trace form

\( 10 q - 5 q^{4} + 2 q^{7} - 5 q^{16} - 2 q^{19} - 3 q^{25} - 4 q^{28} + 2 q^{43} - 3 q^{49} - 8 q^{55} + 2 q^{61} + 10 q^{64} - 4 q^{73} + q^{76} + 4 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(1539, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1539.1.o.a 1539.o 171.o $2$ $0.768$ \(\Q(\sqrt{-3}) \) $D_{3}$ \(\Q(\sqrt{-19}) \) None 1539.1.c.a \(0\) \(0\) \(-2\) \(1\) \(q+\zeta_{6}^{2}q^{4}+\zeta_{6}^{2}q^{5}+\zeta_{6}q^{7}+\zeta_{6}q^{11}+\cdots\)
1539.1.o.b 1539.o 171.o $2$ $0.768$ \(\Q(\sqrt{-3}) \) $D_{2}$ \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-19}) \) \(\Q(\sqrt{57}) \) 171.1.c.a \(0\) \(0\) \(0\) \(2\) \(q+\zeta_{6}^{2}q^{4}+\zeta_{6}q^{7}-\zeta_{6}q^{16}-q^{19}+\cdots\)
1539.1.o.c 1539.o 171.o $2$ $0.768$ \(\Q(\sqrt{-3}) \) $D_{3}$ \(\Q(\sqrt{-19}) \) None 1539.1.c.a \(0\) \(0\) \(2\) \(1\) \(q+\zeta_{6}^{2}q^{4}-\zeta_{6}^{2}q^{5}+\zeta_{6}q^{7}-\zeta_{6}q^{11}+\cdots\)
1539.1.o.d 1539.o 171.o $4$ $0.768$ \(\Q(\zeta_{12})\) $D_{6}$ \(\Q(\sqrt{-19}) \) None 1539.1.c.e \(0\) \(0\) \(0\) \(-2\) \(q-\zeta_{12}^{2}q^{4}+\zeta_{12}^{4}q^{7}+(-\zeta_{12}^{3}-\zeta_{12}^{5}+\cdots)q^{11}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(1539, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(1539, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(171, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(513, [\chi])\)\(^{\oplus 2}\)