Properties

Label 1530.2.m.h.647.1
Level $1530$
Weight $2$
Character 1530.647
Analytic conductor $12.217$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1530,2,Mod(647,1530)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1530.647"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1530, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1530 = 2 \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1530.m (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,-8,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2171115093\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: 16.0.17364600040304039428096.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 20 x^{14} - 40 x^{13} + 104 x^{12} - 180 x^{11} + 242 x^{10} - 132 x^{9} - 302 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 647.1
Root \(1.25829 - 3.03778i\) of defining polynomial
Character \(\chi\) \(=\) 1530.647
Dual form 1530.2.m.h.953.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} -1.00000i q^{4} +(-2.16023 + 0.577419i) q^{5} +(1.51658 + 1.51658i) q^{7} +(0.707107 + 0.707107i) q^{8} +(1.11922 - 1.93581i) q^{10} -5.47530i q^{11} +(1.53844 - 1.53844i) q^{13} -2.14477 q^{14} -1.00000 q^{16} +(-0.707107 + 0.707107i) q^{17} +8.66635i q^{19} +(0.577419 + 2.16023i) q^{20} +(3.87162 + 3.87162i) q^{22} +(-4.15186 - 4.15186i) q^{23} +(4.33317 - 2.49472i) q^{25} +2.17569i q^{26} +(1.51658 - 1.51658i) q^{28} -3.13470 q^{29} -9.82789 q^{31} +(0.707107 - 0.707107i) q^{32} -1.00000i q^{34} +(-4.15186 - 2.40046i) q^{35} +(-4.21657 - 4.21657i) q^{37} +(-6.12803 - 6.12803i) q^{38} +(-1.93581 - 1.11922i) q^{40} +3.48117i q^{41} +(6.41006 - 6.41006i) q^{43} -5.47530 q^{44} +5.87162 q^{46} +(2.96242 - 2.96242i) q^{47} -2.39997i q^{49} +(-1.29999 + 4.82805i) q^{50} +(-1.53844 - 1.53844i) q^{52} +(-3.58990 - 3.58990i) q^{53} +(3.16154 + 11.8279i) q^{55} +2.14477i q^{56} +(2.21657 - 2.21657i) q^{58} +11.1574 q^{59} +4.75100 q^{61} +(6.94937 - 6.94937i) q^{62} +1.00000i q^{64} +(-2.43506 + 4.21172i) q^{65} +(-2.86153 - 2.86153i) q^{67} +(0.707107 + 0.707107i) q^{68} +(4.63319 - 1.23843i) q^{70} +1.20241i q^{71} +(-0.699986 + 0.699986i) q^{73} +5.96312 q^{74} +8.66635 q^{76} +(8.30372 - 8.30372i) q^{77} -12.2149i q^{79} +(2.16023 - 0.577419i) q^{80} +(-2.46156 - 2.46156i) q^{82} +(-5.76559 - 5.76559i) q^{83} +(1.11922 - 1.93581i) q^{85} +9.06520i q^{86} +(3.87162 - 3.87162i) q^{88} -9.65609 q^{89} +4.66635 q^{91} +(-4.15186 + 4.15186i) q^{92} +4.18949i q^{94} +(-5.00412 - 18.7213i) q^{95} +(-9.41006 - 9.41006i) q^{97} +(1.69704 + 1.69704i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{7} + 4 q^{10} + 8 q^{13} - 16 q^{16} - 8 q^{22} + 16 q^{25} - 8 q^{28} - 56 q^{31} - 24 q^{37} + 4 q^{40} + 16 q^{43} + 24 q^{46} - 8 q^{52} + 56 q^{55} - 8 q^{58} + 8 q^{61} - 40 q^{67} + 32 q^{70}+ \cdots - 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1530\mathbb{Z}\right)^\times\).

\(n\) \(307\) \(1261\) \(1361\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) −2.16023 + 0.577419i −0.966084 + 0.258230i
\(6\) 0 0
\(7\) 1.51658 + 1.51658i 0.573213 + 0.573213i 0.933025 0.359812i \(-0.117159\pi\)
−0.359812 + 0.933025i \(0.617159\pi\)
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 0 0
\(10\) 1.11922 1.93581i 0.353927 0.612157i
\(11\) 5.47530i 1.65086i −0.564502 0.825432i \(-0.690932\pi\)
0.564502 0.825432i \(-0.309068\pi\)
\(12\) 0 0
\(13\) 1.53844 1.53844i 0.426688 0.426688i −0.460811 0.887498i \(-0.652441\pi\)
0.887498 + 0.460811i \(0.152441\pi\)
\(14\) −2.14477 −0.573213
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −0.707107 + 0.707107i −0.171499 + 0.171499i
\(18\) 0 0
\(19\) 8.66635i 1.98820i 0.108483 + 0.994098i \(0.465401\pi\)
−0.108483 + 0.994098i \(0.534599\pi\)
\(20\) 0.577419 + 2.16023i 0.129115 + 0.483042i
\(21\) 0 0
\(22\) 3.87162 + 3.87162i 0.825432 + 0.825432i
\(23\) −4.15186 4.15186i −0.865723 0.865723i 0.126273 0.991996i \(-0.459699\pi\)
−0.991996 + 0.126273i \(0.959699\pi\)
\(24\) 0 0
\(25\) 4.33317 2.49472i 0.866635 0.498943i
\(26\) 2.17569i 0.426688i
\(27\) 0 0
\(28\) 1.51658 1.51658i 0.286607 0.286607i
\(29\) −3.13470 −0.582099 −0.291049 0.956708i \(-0.594004\pi\)
−0.291049 + 0.956708i \(0.594004\pi\)
\(30\) 0 0
\(31\) −9.82789 −1.76514 −0.882570 0.470180i \(-0.844189\pi\)
−0.882570 + 0.470180i \(0.844189\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 0 0
\(34\) 1.00000i 0.171499i
\(35\) −4.15186 2.40046i −0.701793 0.405751i
\(36\) 0 0
\(37\) −4.21657 4.21657i −0.693199 0.693199i 0.269735 0.962934i \(-0.413064\pi\)
−0.962934 + 0.269735i \(0.913064\pi\)
\(38\) −6.12803 6.12803i −0.994098 0.994098i
\(39\) 0 0
\(40\) −1.93581 1.11922i −0.306078 0.176963i
\(41\) 3.48117i 0.543667i 0.962344 + 0.271833i \(0.0876299\pi\)
−0.962344 + 0.271833i \(0.912370\pi\)
\(42\) 0 0
\(43\) 6.41006 6.41006i 0.977525 0.977525i −0.0222275 0.999753i \(-0.507076\pi\)
0.999753 + 0.0222275i \(0.00707581\pi\)
\(44\) −5.47530 −0.825432
\(45\) 0 0
\(46\) 5.87162 0.865723
\(47\) 2.96242 2.96242i 0.432113 0.432113i −0.457234 0.889347i \(-0.651160\pi\)
0.889347 + 0.457234i \(0.151160\pi\)
\(48\) 0 0
\(49\) 2.39997i 0.342853i
\(50\) −1.29999 + 4.82805i −0.183846 + 0.682789i
\(51\) 0 0
\(52\) −1.53844 1.53844i −0.213344 0.213344i
\(53\) −3.58990 3.58990i −0.493111 0.493111i 0.416174 0.909285i \(-0.363371\pi\)
−0.909285 + 0.416174i \(0.863371\pi\)
\(54\) 0 0
\(55\) 3.16154 + 11.8279i 0.426302 + 1.59487i
\(56\) 2.14477i 0.286607i
\(57\) 0 0
\(58\) 2.21657 2.21657i 0.291049 0.291049i
\(59\) 11.1574 1.45257 0.726285 0.687394i \(-0.241245\pi\)
0.726285 + 0.687394i \(0.241245\pi\)
\(60\) 0 0
\(61\) 4.75100 0.608303 0.304152 0.952624i \(-0.401627\pi\)
0.304152 + 0.952624i \(0.401627\pi\)
\(62\) 6.94937 6.94937i 0.882570 0.882570i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −2.43506 + 4.21172i −0.302033 + 0.522399i
\(66\) 0 0
\(67\) −2.86153 2.86153i −0.349591 0.349591i 0.510366 0.859957i \(-0.329510\pi\)
−0.859957 + 0.510366i \(0.829510\pi\)
\(68\) 0.707107 + 0.707107i 0.0857493 + 0.0857493i
\(69\) 0 0
\(70\) 4.63319 1.23843i 0.553772 0.148021i
\(71\) 1.20241i 0.142700i 0.997451 + 0.0713499i \(0.0227307\pi\)
−0.997451 + 0.0713499i \(0.977269\pi\)
\(72\) 0 0
\(73\) −0.699986 + 0.699986i −0.0819271 + 0.0819271i −0.746883 0.664956i \(-0.768450\pi\)
0.664956 + 0.746883i \(0.268450\pi\)
\(74\) 5.96312 0.693199
\(75\) 0 0
\(76\) 8.66635 0.994098
\(77\) 8.30372 8.30372i 0.946297 0.946297i
\(78\) 0 0
\(79\) 12.2149i 1.37428i −0.726524 0.687141i \(-0.758865\pi\)
0.726524 0.687141i \(-0.241135\pi\)
\(80\) 2.16023 0.577419i 0.241521 0.0645574i
\(81\) 0 0
\(82\) −2.46156 2.46156i −0.271833 0.271833i
\(83\) −5.76559 5.76559i −0.632856 0.632856i 0.315927 0.948783i \(-0.397684\pi\)
−0.948783 + 0.315927i \(0.897684\pi\)
\(84\) 0 0
\(85\) 1.11922 1.93581i 0.121396 0.209968i
\(86\) 9.06520i 0.977525i
\(87\) 0 0
\(88\) 3.87162 3.87162i 0.412716 0.412716i
\(89\) −9.65609 −1.02354 −0.511772 0.859121i \(-0.671011\pi\)
−0.511772 + 0.859121i \(0.671011\pi\)
\(90\) 0 0
\(91\) 4.66635 0.489166
\(92\) −4.15186 + 4.15186i −0.432861 + 0.432861i
\(93\) 0 0
\(94\) 4.18949i 0.432113i
\(95\) −5.00412 18.7213i −0.513411 1.92076i
\(96\) 0 0
\(97\) −9.41006 9.41006i −0.955447 0.955447i 0.0436018 0.999049i \(-0.486117\pi\)
−0.999049 + 0.0436018i \(0.986117\pi\)
\(98\) 1.69704 + 1.69704i 0.171427 + 0.171427i
\(99\) 0 0
\(100\) −2.49472 4.33317i −0.249472 0.433317i
\(101\) 9.11209i 0.906687i −0.891336 0.453344i \(-0.850231\pi\)
0.891336 0.453344i \(-0.149769\pi\)
\(102\) 0 0
\(103\) 10.8610 10.8610i 1.07017 1.07017i 0.0728263 0.997345i \(-0.476798\pi\)
0.997345 0.0728263i \(-0.0232019\pi\)
\(104\) 2.17569 0.213344
\(105\) 0 0
\(106\) 5.07689 0.493111
\(107\) −3.63680 + 3.63680i −0.351582 + 0.351582i −0.860698 0.509116i \(-0.829973\pi\)
0.509116 + 0.860698i \(0.329973\pi\)
\(108\) 0 0
\(109\) 18.1274i 1.73629i −0.496309 0.868146i \(-0.665312\pi\)
0.496309 0.868146i \(-0.334688\pi\)
\(110\) −10.5991 6.12803i −1.01059 0.584285i
\(111\) 0 0
\(112\) −1.51658 1.51658i −0.143303 0.143303i
\(113\) 4.19507 + 4.19507i 0.394639 + 0.394639i 0.876337 0.481698i \(-0.159980\pi\)
−0.481698 + 0.876337i \(0.659980\pi\)
\(114\) 0 0
\(115\) 11.3663 + 6.57160i 1.05992 + 0.612805i
\(116\) 3.13470i 0.291049i
\(117\) 0 0
\(118\) −7.88947 + 7.88947i −0.726285 + 0.726285i
\(119\) −2.14477 −0.196611
\(120\) 0 0
\(121\) −18.9789 −1.72535
\(122\) −3.35946 + 3.35946i −0.304152 + 0.304152i
\(123\) 0 0
\(124\) 9.82789i 0.882570i
\(125\) −7.92015 + 7.89121i −0.708400 + 0.705812i
\(126\) 0 0
\(127\) −14.5817 14.5817i −1.29392 1.29392i −0.932344 0.361572i \(-0.882240\pi\)
−0.361572 0.932344i \(-0.617760\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) 0 0
\(130\) −1.25628 4.69999i −0.110183 0.412216i
\(131\) 11.9807i 1.04676i 0.852099 + 0.523380i \(0.175329\pi\)
−0.852099 + 0.523380i \(0.824671\pi\)
\(132\) 0 0
\(133\) −13.1432 + 13.1432i −1.13966 + 1.13966i
\(134\) 4.04681 0.349591
\(135\) 0 0
\(136\) −1.00000 −0.0857493
\(137\) 6.98397 6.98397i 0.596681 0.596681i −0.342747 0.939428i \(-0.611357\pi\)
0.939428 + 0.342747i \(0.111357\pi\)
\(138\) 0 0
\(139\) 3.55375i 0.301425i −0.988578 0.150713i \(-0.951843\pi\)
0.988578 0.150713i \(-0.0481568\pi\)
\(140\) −2.40046 + 4.15186i −0.202876 + 0.350896i
\(141\) 0 0
\(142\) −0.850232 0.850232i −0.0713499 0.0713499i
\(143\) −8.42344 8.42344i −0.704403 0.704403i
\(144\) 0 0
\(145\) 6.77166 1.81003i 0.562356 0.150315i
\(146\) 0.989929i 0.0819271i
\(147\) 0 0
\(148\) −4.21657 + 4.21657i −0.346600 + 0.346600i
\(149\) −3.97399 −0.325562 −0.162781 0.986662i \(-0.552046\pi\)
−0.162781 + 0.986662i \(0.552046\pi\)
\(150\) 0 0
\(151\) 19.2095 1.56325 0.781625 0.623749i \(-0.214391\pi\)
0.781625 + 0.623749i \(0.214391\pi\)
\(152\) −6.12803 + 6.12803i −0.497049 + 0.497049i
\(153\) 0 0
\(154\) 11.7432i 0.946297i
\(155\) 21.2305 5.67481i 1.70527 0.455812i
\(156\) 0 0
\(157\) 7.49472 + 7.49472i 0.598143 + 0.598143i 0.939818 0.341675i \(-0.110994\pi\)
−0.341675 + 0.939818i \(0.610994\pi\)
\(158\) 8.63723 + 8.63723i 0.687141 + 0.687141i
\(159\) 0 0
\(160\) −1.11922 + 1.93581i −0.0884817 + 0.153039i
\(161\) 12.5933i 0.992488i
\(162\) 0 0
\(163\) −10.2201 + 10.2201i −0.800500 + 0.800500i −0.983174 0.182674i \(-0.941525\pi\)
0.182674 + 0.983174i \(0.441525\pi\)
\(164\) 3.48117 0.271833
\(165\) 0 0
\(166\) 8.15378 0.632856
\(167\) −0.821334 + 0.821334i −0.0635567 + 0.0635567i −0.738171 0.674614i \(-0.764310\pi\)
0.674614 + 0.738171i \(0.264310\pi\)
\(168\) 0 0
\(169\) 8.26638i 0.635875i
\(170\) 0.577419 + 2.16023i 0.0442860 + 0.165682i
\(171\) 0 0
\(172\) −6.41006 6.41006i −0.488763 0.488763i
\(173\) −6.05390 6.05390i −0.460270 0.460270i 0.438474 0.898744i \(-0.355519\pi\)
−0.898744 + 0.438474i \(0.855519\pi\)
\(174\) 0 0
\(175\) 10.3550 + 2.78817i 0.782767 + 0.210766i
\(176\) 5.47530i 0.412716i
\(177\) 0 0
\(178\) 6.82789 6.82789i 0.511772 0.511772i
\(179\) −3.07115 −0.229549 −0.114774 0.993392i \(-0.536615\pi\)
−0.114774 + 0.993392i \(0.536615\pi\)
\(180\) 0 0
\(181\) 21.6506 1.60927 0.804637 0.593767i \(-0.202360\pi\)
0.804637 + 0.593767i \(0.202360\pi\)
\(182\) −3.29961 + 3.29961i −0.244583 + 0.244583i
\(183\) 0 0
\(184\) 5.87162i 0.432861i
\(185\) 11.5435 + 6.67402i 0.848693 + 0.490684i
\(186\) 0 0
\(187\) 3.87162 + 3.87162i 0.283121 + 0.283121i
\(188\) −2.96242 2.96242i −0.216056 0.216056i
\(189\) 0 0
\(190\) 16.7764 + 9.69951i 1.21709 + 0.703676i
\(191\) 2.98406i 0.215919i −0.994155 0.107959i \(-0.965568\pi\)
0.994155 0.107959i \(-0.0344317\pi\)
\(192\) 0 0
\(193\) 5.88692 5.88692i 0.423750 0.423750i −0.462743 0.886493i \(-0.653135\pi\)
0.886493 + 0.462743i \(0.153135\pi\)
\(194\) 13.3078 0.955447
\(195\) 0 0
\(196\) −2.39997 −0.171427
\(197\) 5.59700 5.59700i 0.398769 0.398769i −0.479029 0.877799i \(-0.659011\pi\)
0.877799 + 0.479029i \(0.159011\pi\)
\(198\) 0 0
\(199\) 1.35103i 0.0957719i −0.998853 0.0478859i \(-0.984752\pi\)
0.998853 0.0478859i \(-0.0152484\pi\)
\(200\) 4.82805 + 1.29999i 0.341394 + 0.0919229i
\(201\) 0 0
\(202\) 6.44322 + 6.44322i 0.453344 + 0.453344i
\(203\) −4.75402 4.75402i −0.333667 0.333667i
\(204\) 0 0
\(205\) −2.01009 7.52011i −0.140391 0.525227i
\(206\) 15.3598i 1.07017i
\(207\) 0 0
\(208\) −1.53844 + 1.53844i −0.106672 + 0.106672i
\(209\) 47.4508 3.28224
\(210\) 0 0
\(211\) −13.4202 −0.923882 −0.461941 0.886911i \(-0.652847\pi\)
−0.461941 + 0.886911i \(0.652847\pi\)
\(212\) −3.58990 + 3.58990i −0.246556 + 0.246556i
\(213\) 0 0
\(214\) 5.14321i 0.351582i
\(215\) −10.1459 + 17.5485i −0.691945 + 1.19680i
\(216\) 0 0
\(217\) −14.9048 14.9048i −1.01180 1.01180i
\(218\) 12.8180 + 12.8180i 0.868146 + 0.868146i
\(219\) 0 0
\(220\) 11.8279 3.16154i 0.797436 0.213151i
\(221\) 2.17569i 0.146353i
\(222\) 0 0
\(223\) −16.2812 + 16.2812i −1.09027 + 1.09027i −0.0947709 + 0.995499i \(0.530212\pi\)
−0.995499 + 0.0947709i \(0.969788\pi\)
\(224\) 2.14477 0.143303
\(225\) 0 0
\(226\) −5.93272 −0.394639
\(227\) −8.77490 + 8.77490i −0.582411 + 0.582411i −0.935565 0.353154i \(-0.885109\pi\)
0.353154 + 0.935565i \(0.385109\pi\)
\(228\) 0 0
\(229\) 6.47686i 0.428003i 0.976833 + 0.214001i \(0.0686497\pi\)
−0.976833 + 0.214001i \(0.931350\pi\)
\(230\) −12.6840 + 3.39039i −0.836361 + 0.223555i
\(231\) 0 0
\(232\) −2.21657 2.21657i −0.145525 0.145525i
\(233\) −7.07107 7.07107i −0.463241 0.463241i 0.436475 0.899716i \(-0.356227\pi\)
−0.899716 + 0.436475i \(0.856227\pi\)
\(234\) 0 0
\(235\) −4.68894 + 8.11005i −0.305873 + 0.529041i
\(236\) 11.1574i 0.726285i
\(237\) 0 0
\(238\) 1.51658 1.51658i 0.0983053 0.0983053i
\(239\) 6.84999 0.443089 0.221544 0.975150i \(-0.428890\pi\)
0.221544 + 0.975150i \(0.428890\pi\)
\(240\) 0 0
\(241\) −29.4865 −1.89939 −0.949695 0.313175i \(-0.898607\pi\)
−0.949695 + 0.313175i \(0.898607\pi\)
\(242\) 13.4201 13.4201i 0.862675 0.862675i
\(243\) 0 0
\(244\) 4.75100i 0.304152i
\(245\) 1.38579 + 5.18449i 0.0885349 + 0.331225i
\(246\) 0 0
\(247\) 13.3327 + 13.3327i 0.848339 + 0.848339i
\(248\) −6.94937 6.94937i −0.441285 0.441285i
\(249\) 0 0
\(250\) 0.0204612 11.1803i 0.00129408 0.707106i
\(251\) 24.9438i 1.57444i 0.616673 + 0.787219i \(0.288480\pi\)
−0.616673 + 0.787219i \(0.711520\pi\)
\(252\) 0 0
\(253\) −22.7327 + 22.7327i −1.42919 + 1.42919i
\(254\) 20.6216 1.29392
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 10.8635 10.8635i 0.677646 0.677646i −0.281821 0.959467i \(-0.590938\pi\)
0.959467 + 0.281821i \(0.0909383\pi\)
\(258\) 0 0
\(259\) 12.7895i 0.794702i
\(260\) 4.21172 + 2.43506i 0.261200 + 0.151016i
\(261\) 0 0
\(262\) −8.47165 8.47165i −0.523380 0.523380i
\(263\) −20.0484 20.0484i −1.23624 1.23624i −0.961527 0.274711i \(-0.911418\pi\)
−0.274711 0.961527i \(-0.588582\pi\)
\(264\) 0 0
\(265\) 9.82789 + 5.68213i 0.603722 + 0.349051i
\(266\) 18.5873i 1.13966i
\(267\) 0 0
\(268\) −2.86153 + 2.86153i −0.174796 + 0.174796i
\(269\) 26.6426 1.62443 0.812215 0.583358i \(-0.198262\pi\)
0.812215 + 0.583358i \(0.198262\pi\)
\(270\) 0 0
\(271\) −20.4096 −1.23979 −0.619897 0.784683i \(-0.712826\pi\)
−0.619897 + 0.784683i \(0.712826\pi\)
\(272\) 0.707107 0.707107i 0.0428746 0.0428746i
\(273\) 0 0
\(274\) 9.87683i 0.596681i
\(275\) −13.6593 23.7254i −0.823687 1.43070i
\(276\) 0 0
\(277\) −3.09073 3.09073i −0.185704 0.185704i 0.608132 0.793836i \(-0.291919\pi\)
−0.793836 + 0.608132i \(0.791919\pi\)
\(278\) 2.51288 + 2.51288i 0.150713 + 0.150713i
\(279\) 0 0
\(280\) −1.23843 4.63319i −0.0740104 0.276886i
\(281\) 16.7122i 0.996967i 0.866899 + 0.498484i \(0.166110\pi\)
−0.866899 + 0.498484i \(0.833890\pi\)
\(282\) 0 0
\(283\) −13.0332 + 13.0332i −0.774741 + 0.774741i −0.978931 0.204190i \(-0.934544\pi\)
0.204190 + 0.978931i \(0.434544\pi\)
\(284\) 1.20241 0.0713499
\(285\) 0 0
\(286\) 11.9125 0.704403
\(287\) −5.27946 + 5.27946i −0.311637 + 0.311637i
\(288\) 0 0
\(289\) 1.00000i 0.0588235i
\(290\) −3.50840 + 6.06818i −0.206020 + 0.356336i
\(291\) 0 0
\(292\) 0.699986 + 0.699986i 0.0409636 + 0.0409636i
\(293\) 12.1214 + 12.1214i 0.708140 + 0.708140i 0.966144 0.258004i \(-0.0830648\pi\)
−0.258004 + 0.966144i \(0.583065\pi\)
\(294\) 0 0
\(295\) −24.1025 + 6.44250i −1.40330 + 0.375097i
\(296\) 5.96312i 0.346600i
\(297\) 0 0
\(298\) 2.81003 2.81003i 0.162781 0.162781i
\(299\) −12.7748 −0.738787
\(300\) 0 0
\(301\) 19.4427 1.12066
\(302\) −13.5832 + 13.5832i −0.781625 + 0.781625i
\(303\) 0 0
\(304\) 8.66635i 0.497049i
\(305\) −10.2632 + 2.74332i −0.587672 + 0.157082i
\(306\) 0 0
\(307\) 5.96381 + 5.96381i 0.340373 + 0.340373i 0.856507 0.516135i \(-0.172630\pi\)
−0.516135 + 0.856507i \(0.672630\pi\)
\(308\) −8.30372 8.30372i −0.473149 0.473149i
\(309\) 0 0
\(310\) −10.9995 + 19.0249i −0.624731 + 1.08054i
\(311\) 13.0954i 0.742570i 0.928519 + 0.371285i \(0.121083\pi\)
−0.928519 + 0.371285i \(0.878917\pi\)
\(312\) 0 0
\(313\) −1.22058 + 1.22058i −0.0689910 + 0.0689910i −0.740760 0.671769i \(-0.765535\pi\)
0.671769 + 0.740760i \(0.265535\pi\)
\(314\) −10.5991 −0.598143
\(315\) 0 0
\(316\) −12.2149 −0.687141
\(317\) 15.0556 15.0556i 0.845604 0.845604i −0.143977 0.989581i \(-0.545989\pi\)
0.989581 + 0.143977i \(0.0459890\pi\)
\(318\) 0 0
\(319\) 17.1634i 0.960965i
\(320\) −0.577419 2.16023i −0.0322787 0.120760i
\(321\) 0 0
\(322\) 8.90478 + 8.90478i 0.496244 + 0.496244i
\(323\) −6.12803 6.12803i −0.340973 0.340973i
\(324\) 0 0
\(325\) 2.82837 10.5043i 0.156890 0.582675i
\(326\) 14.4534i 0.800500i
\(327\) 0 0
\(328\) −2.46156 + 2.46156i −0.135917 + 0.135917i
\(329\) 8.98548 0.495385
\(330\) 0 0
\(331\) −13.9327 −0.765812 −0.382906 0.923787i \(-0.625077\pi\)
−0.382906 + 0.923787i \(0.625077\pi\)
\(332\) −5.76559 + 5.76559i −0.316428 + 0.316428i
\(333\) 0 0
\(334\) 1.16154i 0.0635567i
\(335\) 7.83385 + 4.52925i 0.428009 + 0.247459i
\(336\) 0 0
\(337\) 6.09996 + 6.09996i 0.332286 + 0.332286i 0.853454 0.521168i \(-0.174504\pi\)
−0.521168 + 0.853454i \(0.674504\pi\)
\(338\) −5.84521 5.84521i −0.317938 0.317938i
\(339\) 0 0
\(340\) −1.93581 1.11922i −0.104984 0.0606980i
\(341\) 53.8106i 2.91401i
\(342\) 0 0
\(343\) 14.2558 14.2558i 0.769741 0.769741i
\(344\) 9.06520 0.488763
\(345\) 0 0
\(346\) 8.56151 0.460270
\(347\) 17.7171 17.7171i 0.951103 0.951103i −0.0477558 0.998859i \(-0.515207\pi\)
0.998859 + 0.0477558i \(0.0152069\pi\)
\(348\) 0 0
\(349\) 3.74419i 0.200422i −0.994966 0.100211i \(-0.968048\pi\)
0.994966 0.100211i \(-0.0319518\pi\)
\(350\) −9.29365 + 5.35058i −0.496767 + 0.286001i
\(351\) 0 0
\(352\) −3.87162 3.87162i −0.206358 0.206358i
\(353\) −8.36557 8.36557i −0.445254 0.445254i 0.448519 0.893773i \(-0.351952\pi\)
−0.893773 + 0.448519i \(0.851952\pi\)
\(354\) 0 0
\(355\) −0.694294 2.59748i −0.0368493 0.137860i
\(356\) 9.65609i 0.511772i
\(357\) 0 0
\(358\) 2.17163 2.17163i 0.114774 0.114774i
\(359\) 17.6954 0.933930 0.466965 0.884276i \(-0.345347\pi\)
0.466965 + 0.884276i \(0.345347\pi\)
\(360\) 0 0
\(361\) −56.1056 −2.95293
\(362\) −15.3093 + 15.3093i −0.804637 + 0.804637i
\(363\) 0 0
\(364\) 4.66635i 0.244583i
\(365\) 1.10794 1.91631i 0.0579924 0.100304i
\(366\) 0 0
\(367\) −20.7157 20.7157i −1.08135 1.08135i −0.996384 0.0849659i \(-0.972922\pi\)
−0.0849659 0.996384i \(-0.527078\pi\)
\(368\) 4.15186 + 4.15186i 0.216431 + 0.216431i
\(369\) 0 0
\(370\) −12.8817 + 3.44322i −0.669688 + 0.179005i
\(371\) 10.8887i 0.565316i
\(372\) 0 0
\(373\) 25.6249 25.6249i 1.32681 1.32681i 0.418672 0.908138i \(-0.362496\pi\)
0.908138 0.418672i \(-0.137504\pi\)
\(374\) −5.47530 −0.283121
\(375\) 0 0
\(376\) 4.18949 0.216056
\(377\) −4.82256 + 4.82256i −0.248374 + 0.248374i
\(378\) 0 0
\(379\) 9.14321i 0.469655i 0.972037 + 0.234828i \(0.0754525\pi\)
−0.972037 + 0.234828i \(0.924547\pi\)
\(380\) −18.7213 + 5.00412i −0.960382 + 0.256706i
\(381\) 0 0
\(382\) 2.11005 + 2.11005i 0.107959 + 0.107959i
\(383\) −18.2501 18.2501i −0.932537 0.932537i 0.0653267 0.997864i \(-0.479191\pi\)
−0.997864 + 0.0653267i \(0.979191\pi\)
\(384\) 0 0
\(385\) −13.1432 + 22.7327i −0.669840 + 1.15856i
\(386\) 8.32537i 0.423750i
\(387\) 0 0
\(388\) −9.41006 + 9.41006i −0.477724 + 0.477724i
\(389\) −16.2301 −0.822896 −0.411448 0.911433i \(-0.634977\pi\)
−0.411448 + 0.911433i \(0.634977\pi\)
\(390\) 0 0
\(391\) 5.87162 0.296941
\(392\) 1.69704 1.69704i 0.0857133 0.0857133i
\(393\) 0 0
\(394\) 7.91535i 0.398769i
\(395\) 7.05311 + 26.3869i 0.354880 + 1.32767i
\(396\) 0 0
\(397\) 12.0007 + 12.0007i 0.602299 + 0.602299i 0.940922 0.338623i \(-0.109961\pi\)
−0.338623 + 0.940922i \(0.609961\pi\)
\(398\) 0.955321 + 0.955321i 0.0478859 + 0.0478859i
\(399\) 0 0
\(400\) −4.33317 + 2.49472i −0.216659 + 0.124736i
\(401\) 1.01586i 0.0507294i 0.999678 + 0.0253647i \(0.00807470\pi\)
−0.999678 + 0.0253647i \(0.991925\pi\)
\(402\) 0 0
\(403\) −15.1197 + 15.1197i −0.753164 + 0.753164i
\(404\) −9.11209 −0.453344
\(405\) 0 0
\(406\) 6.72320 0.333667
\(407\) −23.0869 + 23.0869i −1.14438 + 1.14438i
\(408\) 0 0
\(409\) 11.7423i 0.580618i 0.956933 + 0.290309i \(0.0937582\pi\)
−0.956933 + 0.290309i \(0.906242\pi\)
\(410\) 6.73887 + 3.89617i 0.332809 + 0.192418i
\(411\) 0 0
\(412\) −10.8610 10.8610i −0.535085 0.535085i
\(413\) 16.9211 + 16.9211i 0.832632 + 0.832632i
\(414\) 0 0
\(415\) 15.7842 + 9.12583i 0.774814 + 0.447969i
\(416\) 2.17569i 0.106672i
\(417\) 0 0
\(418\) −33.5528 + 33.5528i −1.64112 + 1.64112i
\(419\) 1.57742 0.0770621 0.0385310 0.999257i \(-0.487732\pi\)
0.0385310 + 0.999257i \(0.487732\pi\)
\(420\) 0 0
\(421\) 24.3739 1.18791 0.593955 0.804498i \(-0.297566\pi\)
0.593955 + 0.804498i \(0.297566\pi\)
\(422\) 9.48948 9.48948i 0.461941 0.461941i
\(423\) 0 0
\(424\) 5.07689i 0.246556i
\(425\) −1.29999 + 4.82805i −0.0630586 + 0.234195i
\(426\) 0 0
\(427\) 7.20527 + 7.20527i 0.348687 + 0.348687i
\(428\) 3.63680 + 3.63680i 0.175791 + 0.175791i
\(429\) 0 0
\(430\) −5.23442 19.5829i −0.252426 0.944371i
\(431\) 24.8155i 1.19532i 0.801750 + 0.597660i \(0.203903\pi\)
−0.801750 + 0.597660i \(0.796097\pi\)
\(432\) 0 0
\(433\) 16.6374 16.6374i 0.799545 0.799545i −0.183479 0.983024i \(-0.558736\pi\)
0.983024 + 0.183479i \(0.0587359\pi\)
\(434\) 21.0785 1.01180
\(435\) 0 0
\(436\) −18.1274 −0.868146
\(437\) 35.9815 35.9815i 1.72123 1.72123i
\(438\) 0 0
\(439\) 23.0253i 1.09894i 0.835515 + 0.549468i \(0.185169\pi\)
−0.835515 + 0.549468i \(0.814831\pi\)
\(440\) −6.12803 + 10.5991i −0.292143 + 0.505294i
\(441\) 0 0
\(442\) −1.53844 1.53844i −0.0731763 0.0731763i
\(443\) 18.5621 + 18.5621i 0.881910 + 0.881910i 0.993729 0.111819i \(-0.0356676\pi\)
−0.111819 + 0.993729i \(0.535668\pi\)
\(444\) 0 0
\(445\) 20.8594 5.57561i 0.988829 0.264309i
\(446\) 23.0251i 1.09027i
\(447\) 0 0
\(448\) −1.51658 + 1.51658i −0.0716517 + 0.0716517i
\(449\) −21.7559 −1.02672 −0.513361 0.858173i \(-0.671600\pi\)
−0.513361 + 0.858173i \(0.671600\pi\)
\(450\) 0 0
\(451\) 19.0604 0.897520
\(452\) 4.19507 4.19507i 0.197319 0.197319i
\(453\) 0 0
\(454\) 12.4096i 0.582411i
\(455\) −10.0804 + 2.69444i −0.472575 + 0.126317i
\(456\) 0 0
\(457\) 17.7712 + 17.7712i 0.831301 + 0.831301i 0.987695 0.156394i \(-0.0499869\pi\)
−0.156394 + 0.987695i \(0.549987\pi\)
\(458\) −4.57983 4.57983i −0.214001 0.214001i
\(459\) 0 0
\(460\) 6.57160 11.3663i 0.306403 0.529958i
\(461\) 5.98715i 0.278849i −0.990233 0.139425i \(-0.955475\pi\)
0.990233 0.139425i \(-0.0445253\pi\)
\(462\) 0 0
\(463\) −7.95908 + 7.95908i −0.369890 + 0.369890i −0.867437 0.497547i \(-0.834234\pi\)
0.497547 + 0.867437i \(0.334234\pi\)
\(464\) 3.13470 0.145525
\(465\) 0 0
\(466\) 10.0000 0.463241
\(467\) −21.4157 + 21.4157i −0.991002 + 0.991002i −0.999960 0.00895805i \(-0.997149\pi\)
0.00895805 + 0.999960i \(0.497149\pi\)
\(468\) 0 0
\(469\) 8.67947i 0.400781i
\(470\) −2.41909 9.05025i −0.111584 0.417457i
\(471\) 0 0
\(472\) 7.88947 + 7.88947i 0.363142 + 0.363142i
\(473\) −35.0970 35.0970i −1.61376 1.61376i
\(474\) 0 0
\(475\) 21.6201 + 37.5528i 0.991997 + 1.72304i
\(476\) 2.14477i 0.0983053i
\(477\) 0 0
\(478\) −4.84367 + 4.84367i −0.221544 + 0.221544i
\(479\) −2.48933 −0.113740 −0.0568702 0.998382i \(-0.518112\pi\)
−0.0568702 + 0.998382i \(0.518112\pi\)
\(480\) 0 0
\(481\) −12.9739 −0.591559
\(482\) 20.8501 20.8501i 0.949695 0.949695i
\(483\) 0 0
\(484\) 18.9789i 0.862675i
\(485\) 25.7614 + 14.8943i 1.16977 + 0.676317i
\(486\) 0 0
\(487\) 1.46764 + 1.46764i 0.0665050 + 0.0665050i 0.739577 0.673072i \(-0.235026\pi\)
−0.673072 + 0.739577i \(0.735026\pi\)
\(488\) 3.35946 + 3.35946i 0.152076 + 0.152076i
\(489\) 0 0
\(490\) −4.64589 2.68608i −0.209880 0.121345i
\(491\) 41.5512i 1.87518i 0.347741 + 0.937591i \(0.386949\pi\)
−0.347741 + 0.937591i \(0.613051\pi\)
\(492\) 0 0
\(493\) 2.21657 2.21657i 0.0998291 0.0998291i
\(494\) −18.8553 −0.848339
\(495\) 0 0
\(496\) 9.82789 0.441285
\(497\) −1.82355 + 1.82355i −0.0817974 + 0.0817974i
\(498\) 0 0
\(499\) 0.122212i 0.00547097i 0.999996 + 0.00273548i \(0.000870732\pi\)
−0.999996 + 0.00273548i \(0.999129\pi\)
\(500\) 7.89121 + 7.92015i 0.352906 + 0.354200i
\(501\) 0 0
\(502\) −17.6379 17.6379i −0.787219 0.787219i
\(503\) −14.8345 14.8345i −0.661437 0.661437i 0.294282 0.955719i \(-0.404920\pi\)
−0.955719 + 0.294282i \(0.904920\pi\)
\(504\) 0 0
\(505\) 5.26150 + 19.6842i 0.234134 + 0.875936i
\(506\) 32.1488i 1.42919i
\(507\) 0 0
\(508\) −14.5817 + 14.5817i −0.646958 + 0.646958i
\(509\) −9.22444 −0.408866 −0.204433 0.978881i \(-0.565535\pi\)
−0.204433 + 0.978881i \(0.565535\pi\)
\(510\) 0 0
\(511\) −2.12317 −0.0939234
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 15.3633i 0.677646i
\(515\) −17.1910 + 29.7337i −0.757525 + 1.31022i
\(516\) 0 0
\(517\) −16.2201 16.2201i −0.713359 0.713359i
\(518\) 9.04355 + 9.04355i 0.397351 + 0.397351i
\(519\) 0 0
\(520\) −4.69999 + 1.25628i −0.206108 + 0.0550917i
\(521\) 15.5916i 0.683080i −0.939867 0.341540i \(-0.889052\pi\)
0.939867 0.341540i \(-0.110948\pi\)
\(522\) 0 0
\(523\) −12.6405 + 12.6405i −0.552729 + 0.552729i −0.927228 0.374498i \(-0.877815\pi\)
0.374498 + 0.927228i \(0.377815\pi\)
\(524\) 11.9807 0.523380
\(525\) 0 0
\(526\) 28.3527 1.23624
\(527\) 6.94937 6.94937i 0.302719 0.302719i
\(528\) 0 0
\(529\) 11.4759i 0.498952i
\(530\) −10.9672 + 2.93149i −0.476386 + 0.127336i
\(531\) 0 0
\(532\) 13.1432 + 13.1432i 0.569830 + 0.569830i
\(533\) 5.35558 + 5.35558i 0.231976 + 0.231976i
\(534\) 0 0
\(535\) 5.75636 9.95627i 0.248869 0.430447i
\(536\) 4.04681i 0.174796i
\(537\) 0 0
\(538\) −18.8392 + 18.8392i −0.812215 + 0.812215i
\(539\) −13.1406 −0.566004
\(540\) 0 0
\(541\) −19.3450 −0.831705 −0.415853 0.909432i \(-0.636517\pi\)
−0.415853 + 0.909432i \(0.636517\pi\)
\(542\) 14.4318 14.4318i 0.619897 0.619897i
\(543\) 0 0
\(544\) 1.00000i 0.0428746i
\(545\) 10.4671 + 39.1594i 0.448362 + 1.67740i
\(546\) 0 0
\(547\) −1.86881 1.86881i −0.0799046 0.0799046i 0.666025 0.745930i \(-0.267994\pi\)
−0.745930 + 0.666025i \(0.767994\pi\)
\(548\) −6.98397 6.98397i −0.298341 0.298341i
\(549\) 0 0
\(550\) 26.4350 + 7.11781i 1.12719 + 0.303505i
\(551\) 27.1664i 1.15733i
\(552\) 0 0
\(553\) 18.5248 18.5248i 0.787757 0.787757i
\(554\) 4.37096 0.185704
\(555\) 0 0
\(556\) −3.55375 −0.150713
\(557\) 5.50792 5.50792i 0.233378 0.233378i −0.580723 0.814101i \(-0.697230\pi\)
0.814101 + 0.580723i \(0.197230\pi\)
\(558\) 0 0
\(559\) 19.7231i 0.834196i
\(560\) 4.15186 + 2.40046i 0.175448 + 0.101438i
\(561\) 0 0
\(562\) −11.8173 11.8173i −0.498484 0.498484i
\(563\) −27.7001 27.7001i −1.16742 1.16742i −0.982813 0.184606i \(-0.940899\pi\)
−0.184606 0.982813i \(-0.559101\pi\)
\(564\) 0 0
\(565\) −11.4846 6.64000i −0.483162 0.279347i
\(566\) 18.4317i 0.774741i
\(567\) 0 0
\(568\) −0.850232 + 0.850232i −0.0356749 + 0.0356749i
\(569\) 13.4010 0.561797 0.280899 0.959737i \(-0.409368\pi\)
0.280899 + 0.959737i \(0.409368\pi\)
\(570\) 0 0
\(571\) −1.17987 −0.0493762 −0.0246881 0.999695i \(-0.507859\pi\)
−0.0246881 + 0.999695i \(0.507859\pi\)
\(572\) −8.42344 + 8.42344i −0.352202 + 0.352202i
\(573\) 0 0
\(574\) 7.46629i 0.311637i
\(575\) −28.3484 7.63303i −1.18221 0.318319i
\(576\) 0 0
\(577\) 4.11260 + 4.11260i 0.171210 + 0.171210i 0.787511 0.616301i \(-0.211370\pi\)
−0.616301 + 0.787511i \(0.711370\pi\)
\(578\) 0.707107 + 0.707107i 0.0294118 + 0.0294118i
\(579\) 0 0
\(580\) −1.81003 6.77166i −0.0751576 0.281178i
\(581\) 17.4880i 0.725523i
\(582\) 0 0
\(583\) −19.6558 + 19.6558i −0.814059 + 0.814059i
\(584\) −0.989929 −0.0409636
\(585\) 0 0
\(586\) −17.1423 −0.708140
\(587\) 0.761476 0.761476i 0.0314295 0.0314295i −0.691217 0.722647i \(-0.742925\pi\)
0.722647 + 0.691217i \(0.242925\pi\)
\(588\) 0 0
\(589\) 85.1719i 3.50945i
\(590\) 12.4875 21.5986i 0.514104 0.889200i
\(591\) 0 0
\(592\) 4.21657 + 4.21657i 0.173300 + 0.173300i
\(593\) −12.8001 12.8001i −0.525636 0.525636i 0.393632 0.919268i \(-0.371218\pi\)
−0.919268 + 0.393632i \(0.871218\pi\)
\(594\) 0 0
\(595\) 4.63319 1.23843i 0.189942 0.0507707i
\(596\) 3.97399i 0.162781i
\(597\) 0 0
\(598\) 9.03316 9.03316i 0.369393 0.369393i
\(599\) 12.9809 0.530387 0.265194 0.964195i \(-0.414564\pi\)
0.265194 + 0.964195i \(0.414564\pi\)
\(600\) 0 0
\(601\) 23.6709 0.965555 0.482777 0.875743i \(-0.339628\pi\)
0.482777 + 0.875743i \(0.339628\pi\)
\(602\) −13.7481 + 13.7481i −0.560331 + 0.560331i
\(603\) 0 0
\(604\) 19.2095i 0.781625i
\(605\) 40.9987 10.9588i 1.66683 0.445537i
\(606\) 0 0
\(607\) −10.6108 10.6108i −0.430681 0.430681i 0.458179 0.888860i \(-0.348502\pi\)
−0.888860 + 0.458179i \(0.848502\pi\)
\(608\) 6.12803 + 6.12803i 0.248525 + 0.248525i
\(609\) 0 0
\(610\) 5.31739 9.19703i 0.215295 0.372377i
\(611\) 9.11502i 0.368754i
\(612\) 0 0
\(613\) −11.5506 + 11.5506i −0.466525 + 0.466525i −0.900787 0.434262i \(-0.857009\pi\)
0.434262 + 0.900787i \(0.357009\pi\)
\(614\) −8.43410 −0.340373
\(615\) 0 0
\(616\) 11.7432 0.473149
\(617\) −27.7791 + 27.7791i −1.11835 + 1.11835i −0.126361 + 0.991984i \(0.540330\pi\)
−0.991984 + 0.126361i \(0.959670\pi\)
\(618\) 0 0
\(619\) 31.8759i 1.28120i 0.767875 + 0.640600i \(0.221314\pi\)
−0.767875 + 0.640600i \(0.778686\pi\)
\(620\) −5.67481 21.2305i −0.227906 0.852637i
\(621\) 0 0
\(622\) −9.25982 9.25982i −0.371285 0.371285i
\(623\) −14.6442 14.6442i −0.586709 0.586709i
\(624\) 0 0
\(625\) 12.5528 21.6201i 0.502112 0.864803i
\(626\) 1.72615i 0.0689910i
\(627\) 0 0
\(628\) 7.49472 7.49472i 0.299072 0.299072i
\(629\) 5.96312 0.237765
\(630\) 0 0
\(631\) 18.1990 0.724489 0.362245 0.932083i \(-0.382011\pi\)
0.362245 + 0.932083i \(0.382011\pi\)
\(632\) 8.63723 8.63723i 0.343570 0.343570i
\(633\) 0 0
\(634\) 21.2918i 0.845604i
\(635\) 39.9195 + 23.0800i 1.58416 + 0.915904i
\(636\) 0 0
\(637\) −3.69222 3.69222i −0.146291 0.146291i
\(638\) −12.1364 12.1364i −0.480483 0.480483i
\(639\) 0 0
\(640\) 1.93581 + 1.11922i 0.0765196 + 0.0442409i
\(641\) 6.04162i 0.238630i −0.992856 0.119315i \(-0.961930\pi\)
0.992856 0.119315i \(-0.0380698\pi\)
\(642\) 0 0
\(643\) 11.5326 11.5326i 0.454802 0.454802i −0.442143 0.896945i \(-0.645782\pi\)
0.896945 + 0.442143i \(0.145782\pi\)
\(644\) −12.5933 −0.496244
\(645\) 0 0
\(646\) 8.66635 0.340973
\(647\) −21.9591 + 21.9591i −0.863300 + 0.863300i −0.991720 0.128420i \(-0.959009\pi\)
0.128420 + 0.991720i \(0.459009\pi\)
\(648\) 0 0
\(649\) 61.0901i 2.39799i
\(650\) 5.42772 + 9.42764i 0.212893 + 0.369782i
\(651\) 0 0
\(652\) 10.2201 + 10.2201i 0.400250 + 0.400250i
\(653\) 27.6758 + 27.6758i 1.08304 + 1.08304i 0.996225 + 0.0868117i \(0.0276679\pi\)
0.0868117 + 0.996225i \(0.472332\pi\)
\(654\) 0 0
\(655\) −6.91790 25.8811i −0.270305 1.01126i
\(656\) 3.48117i 0.135917i
\(657\) 0 0
\(658\) −6.35369 + 6.35369i −0.247693 + 0.247693i
\(659\) 14.5159 0.565460 0.282730 0.959200i \(-0.408760\pi\)
0.282730 + 0.959200i \(0.408760\pi\)
\(660\) 0 0
\(661\) 2.62968 0.102283 0.0511414 0.998691i \(-0.483714\pi\)
0.0511414 + 0.998691i \(0.483714\pi\)
\(662\) 9.85192 9.85192i 0.382906 0.382906i
\(663\) 0 0
\(664\) 8.15378i 0.316428i
\(665\) 20.8032 35.9815i 0.806713 1.39530i
\(666\) 0 0
\(667\) 13.0148 + 13.0148i 0.503936 + 0.503936i
\(668\) 0.821334 + 0.821334i 0.0317784 + 0.0317784i
\(669\) 0 0
\(670\) −8.74203 + 2.33671i −0.337734 + 0.0902748i
\(671\) 26.0131i 1.00423i
\(672\) 0 0
\(673\) 26.5227 26.5227i 1.02237 1.02237i 0.0226295 0.999744i \(-0.492796\pi\)
0.999744 0.0226295i \(-0.00720382\pi\)
\(674\) −8.62664 −0.332286
\(675\) 0 0
\(676\) 8.26638 0.317938
\(677\) 28.3811 28.3811i 1.09077 1.09077i 0.0953272 0.995446i \(-0.469610\pi\)
0.995446 0.0953272i \(-0.0303897\pi\)
\(678\) 0 0
\(679\) 28.5422i 1.09535i
\(680\) 2.16023 0.577419i 0.0828410 0.0221430i
\(681\) 0 0
\(682\) −38.0498 38.0498i −1.45700 1.45700i
\(683\) 27.3479 + 27.3479i 1.04644 + 1.04644i 0.998868 + 0.0475718i \(0.0151483\pi\)
0.0475718 + 0.998868i \(0.484852\pi\)
\(684\) 0 0
\(685\) −11.0543 + 19.1197i −0.422363 + 0.730525i
\(686\) 20.1608i 0.769741i
\(687\) 0 0
\(688\) −6.41006 + 6.41006i −0.244381 + 0.244381i
\(689\) −11.0457 −0.420809
\(690\) 0 0
\(691\) −8.60950 −0.327521 −0.163760 0.986500i \(-0.552362\pi\)
−0.163760 + 0.986500i \(0.552362\pi\)
\(692\) −6.05390 + 6.05390i −0.230135 + 0.230135i
\(693\) 0 0
\(694\) 25.0557i 0.951103i
\(695\) 2.05200 + 7.67691i 0.0778369 + 0.291202i
\(696\) 0 0
\(697\) −2.46156 2.46156i −0.0932381 0.0932381i
\(698\) 2.64754 + 2.64754i 0.100211 + 0.100211i
\(699\) 0 0
\(700\) 2.78817 10.3550i 0.105383 0.391384i
\(701\) 6.64678i 0.251046i 0.992091 + 0.125523i \(0.0400608\pi\)
−0.992091 + 0.125523i \(0.959939\pi\)
\(702\) 0 0
\(703\) 36.5422 36.5422i 1.37822 1.37822i
\(704\) 5.47530 0.206358
\(705\) 0 0
\(706\) 11.8307 0.445254
\(707\) 13.8192 13.8192i 0.519725 0.519725i
\(708\) 0 0
\(709\) 0.974460i 0.0365966i −0.999833 0.0182983i \(-0.994175\pi\)
0.999833 0.0182983i \(-0.00582486\pi\)
\(710\) 2.32764 + 1.34575i 0.0873546 + 0.0505053i
\(711\) 0 0
\(712\) −6.82789 6.82789i −0.255886 0.255886i
\(713\) 40.8040 + 40.8040i 1.52812 + 1.52812i
\(714\) 0 0
\(715\) 23.0604 + 13.3327i 0.862410 + 0.498615i
\(716\) 3.07115i 0.114774i
\(717\) 0 0
\(718\) −12.5126 + 12.5126i −0.466965 + 0.466965i
\(719\) −32.9116 −1.22739 −0.613697 0.789542i \(-0.710318\pi\)
−0.613697 + 0.789542i \(0.710318\pi\)
\(720\) 0 0
\(721\) 32.9433 1.22687
\(722\) 39.6726 39.6726i 1.47646 1.47646i
\(723\) 0 0
\(724\) 21.6506i 0.804637i
\(725\) −13.5832 + 7.82018i −0.504467 + 0.290434i
\(726\) 0 0
\(727\) 24.8375 + 24.8375i 0.921172 + 0.921172i 0.997112 0.0759404i \(-0.0241959\pi\)
−0.0759404 + 0.997112i \(0.524196\pi\)
\(728\) 3.29961 + 3.29961i 0.122292 + 0.122292i
\(729\) 0 0
\(730\) 0.571604 + 2.13847i 0.0211560 + 0.0791484i
\(731\) 9.06520i 0.335288i
\(732\) 0 0
\(733\) 1.57415 1.57415i 0.0581427 0.0581427i −0.677438 0.735580i \(-0.736910\pi\)
0.735580 + 0.677438i \(0.236910\pi\)
\(734\) 29.2964 1.08135
\(735\) 0 0
\(736\) −5.87162 −0.216431
\(737\) −15.6677 + 15.6677i −0.577127 + 0.577127i
\(738\) 0 0
\(739\) 16.8507i 0.619864i −0.950759 0.309932i \(-0.899694\pi\)
0.950759 0.309932i \(-0.100306\pi\)
\(740\) 6.67402 11.5435i 0.245342 0.424346i
\(741\) 0 0
\(742\) 7.69951 + 7.69951i 0.282658 + 0.282658i
\(743\) −0.763460 0.763460i −0.0280086 0.0280086i 0.692964 0.720972i \(-0.256305\pi\)
−0.720972 + 0.692964i \(0.756305\pi\)
\(744\) 0 0
\(745\) 8.58472 2.29466i 0.314520 0.0840698i
\(746\) 36.2391i 1.32681i
\(747\) 0 0
\(748\) 3.87162 3.87162i 0.141560 0.141560i
\(749\) −11.0310 −0.403064
\(750\) 0 0
\(751\) −10.7233 −0.391299 −0.195650 0.980674i \(-0.562682\pi\)
−0.195650 + 0.980674i \(0.562682\pi\)
\(752\) −2.96242 + 2.96242i −0.108028 + 0.108028i
\(753\) 0 0
\(754\) 6.82013i 0.248374i
\(755\) −41.4970 + 11.0920i −1.51023 + 0.403677i
\(756\) 0 0
\(757\) 3.48429 + 3.48429i 0.126639 + 0.126639i 0.767585 0.640947i \(-0.221458\pi\)
−0.640947 + 0.767585i \(0.721458\pi\)
\(758\) −6.46522 6.46522i −0.234828 0.234828i
\(759\) 0 0
\(760\) 9.69951 16.7764i 0.351838 0.608544i
\(761\) 9.41404i 0.341259i −0.985335 0.170629i \(-0.945420\pi\)
0.985335 0.170629i \(-0.0545801\pi\)
\(762\) 0 0
\(763\) 27.4917 27.4917i 0.995266 0.995266i
\(764\) −2.98406 −0.107959
\(765\) 0 0
\(766\) 25.8096 0.932537
\(767\) 17.1650 17.1650i 0.619794 0.619794i
\(768\) 0 0
\(769\) 38.7740i 1.39823i −0.715011 0.699113i \(-0.753578\pi\)
0.715011 0.699113i \(-0.246422\pi\)
\(770\) −6.78077 25.3681i −0.244362 0.914202i
\(771\) 0 0
\(772\) −5.88692 5.88692i −0.211875 0.211875i
\(773\) −22.2710 22.2710i −0.801032 0.801032i 0.182225 0.983257i \(-0.441670\pi\)
−0.983257 + 0.182225i \(0.941670\pi\)
\(774\) 0 0
\(775\) −42.5860 + 24.5178i −1.52973 + 0.880705i
\(776\) 13.3078i 0.477724i
\(777\) 0 0
\(778\) 11.4764 11.4764i 0.411448 0.411448i
\(779\) −30.1690 −1.08092
\(780\) 0 0
\(781\) 6.58355 0.235578
\(782\) −4.15186 + 4.15186i −0.148470 + 0.148470i
\(783\) 0 0
\(784\) 2.39997i 0.0857133i
\(785\) −20.5179 11.8627i −0.732315 0.423398i
\(786\) 0 0
\(787\) −1.47431 1.47431i −0.0525535 0.0525535i 0.680342 0.732895i \(-0.261831\pi\)
−0.732895 + 0.680342i \(0.761831\pi\)
\(788\) −5.59700 5.59700i −0.199385 0.199385i
\(789\) 0 0
\(790\) −23.6457 13.6711i −0.841276 0.486395i
\(791\) 12.7243i 0.452425i
\(792\) 0 0
\(793\) 7.30915 7.30915i 0.259556 0.259556i
\(794\) −16.9716 −0.602299
\(795\) 0 0
\(796\) −1.35103 −0.0478859
\(797\) 6.46590 6.46590i 0.229034 0.229034i −0.583255 0.812289i \(-0.698221\pi\)
0.812289 + 0.583255i \(0.198221\pi\)
\(798\) 0 0
\(799\) 4.18949i 0.148213i
\(800\) 1.29999 4.82805i 0.0459615 0.170697i
\(801\) 0 0
\(802\) −0.718318 0.718318i −0.0253647 0.0253647i
\(803\) 3.83263 + 3.83263i 0.135251 + 0.135251i
\(804\) 0 0
\(805\) 7.27159 + 27.2043i 0.256290 + 0.958826i
\(806\) 21.3824i 0.753164i
\(807\) 0 0
\(808\) 6.44322 6.44322i 0.226672 0.226672i
\(809\) −8.21041 −0.288663 −0.144331 0.989529i \(-0.546103\pi\)
−0.144331 + 0.989529i \(0.546103\pi\)
\(810\) 0 0
\(811\) 12.9843 0.455942 0.227971 0.973668i \(-0.426791\pi\)
0.227971 + 0.973668i \(0.426791\pi\)
\(812\) −4.75402 + 4.75402i −0.166833 + 0.166833i
\(813\) 0 0
\(814\) 32.6499i 1.14438i
\(815\) 16.1765 27.9790i 0.566637 0.980063i
\(816\) 0 0
\(817\) 55.5518 + 55.5518i 1.94351 + 1.94351i
\(818\) −8.30305 8.30305i −0.290309 0.290309i
\(819\) 0 0
\(820\) −7.52011 + 2.01009i −0.262614 + 0.0701955i
\(821\) 8.75223i 0.305455i −0.988268 0.152727i \(-0.951194\pi\)
0.988268 0.152727i \(-0.0488057\pi\)
\(822\) 0 0
\(823\) −28.7844 + 28.7844i −1.00336 + 1.00336i −0.00336700 + 0.999994i \(0.501072\pi\)
−0.999994 + 0.00336700i \(0.998928\pi\)
\(824\) 15.3598 0.535085
\(825\) 0 0
\(826\) −23.9300 −0.832632
\(827\) 0.812652 0.812652i 0.0282587 0.0282587i −0.692836 0.721095i \(-0.743639\pi\)
0.721095 + 0.692836i \(0.243639\pi\)
\(828\) 0 0
\(829\) 14.3382i 0.497985i −0.968505 0.248993i \(-0.919901\pi\)
0.968505 0.248993i \(-0.0800995\pi\)
\(830\) −17.6140 + 4.70815i −0.611392 + 0.163422i
\(831\) 0 0
\(832\) 1.53844 + 1.53844i 0.0533360 + 0.0533360i
\(833\) 1.69704 + 1.69704i 0.0587988 + 0.0587988i
\(834\) 0 0
\(835\) 1.30001 2.24852i 0.0449889 0.0778133i
\(836\) 47.4508i 1.64112i
\(837\) 0 0
\(838\) −1.11541 + 1.11541i −0.0385310 + 0.0385310i
\(839\) 9.56797 0.330323 0.165162 0.986267i \(-0.447185\pi\)
0.165162 + 0.986267i \(0.447185\pi\)
\(840\) 0 0
\(841\) −19.1737 −0.661161
\(842\) −17.2349 + 17.2349i −0.593955 + 0.593955i
\(843\) 0 0
\(844\) 13.4202i 0.461941i
\(845\) −4.77317 17.8573i −0.164202 0.614308i
\(846\) 0 0
\(847\) −28.7830 28.7830i −0.988994 0.988994i
\(848\) 3.58990 + 3.58990i 0.123278 + 0.123278i
\(849\) 0 0
\(850\) −2.49472 4.33317i −0.0855680 0.148627i
\(851\) 35.0132i 1.20024i
\(852\) 0 0
\(853\) −12.7517 + 12.7517i −0.436611 + 0.436611i −0.890870 0.454259i \(-0.849904\pi\)
0.454259 + 0.890870i \(0.349904\pi\)
\(854\) −10.1898 −0.348687
\(855\) 0 0
\(856\) −5.14321 −0.175791
\(857\) 16.3790 16.3790i 0.559496 0.559496i −0.369668 0.929164i \(-0.620529\pi\)
0.929164 + 0.369668i \(0.120529\pi\)
\(858\) 0 0
\(859\) 12.1336i 0.413993i −0.978342 0.206996i \(-0.933631\pi\)
0.978342 0.206996i \(-0.0663689\pi\)
\(860\) 17.5485 + 10.1459i 0.598399 + 0.345973i
\(861\) 0 0
\(862\) −17.5472 17.5472i −0.597660 0.597660i
\(863\) −1.59510 1.59510i −0.0542977 0.0542977i 0.679437 0.733734i \(-0.262224\pi\)
−0.733734 + 0.679437i \(0.762224\pi\)
\(864\) 0 0
\(865\) 16.5735 + 9.58217i 0.563514 + 0.325804i
\(866\) 23.5289i 0.799545i
\(867\) 0 0
\(868\) −14.9048 + 14.9048i −0.505901 + 0.505901i
\(869\) −66.8801 −2.26875
\(870\) 0 0
\(871\) −8.80460 −0.298333
\(872\) 12.8180 12.8180i 0.434073 0.434073i
\(873\) 0 0
\(874\) 50.8855i 1.72123i
\(875\) −23.9792 0.0438846i −0.810645 0.00148357i
\(876\) 0 0
\(877\) 26.2960 + 26.2960i 0.887953 + 0.887953i 0.994326 0.106373i \(-0.0339239\pi\)
−0.106373 + 0.994326i \(0.533924\pi\)
\(878\) −16.2813 16.2813i −0.549468 0.549468i
\(879\) 0 0
\(880\) −3.16154 11.8279i −0.106576 0.398718i
\(881\) 9.51113i 0.320438i −0.987081 0.160219i \(-0.948780\pi\)
0.987081 0.160219i \(-0.0512200\pi\)
\(882\) 0 0
\(883\) 33.3586 33.3586i 1.12261 1.12261i 0.131257 0.991348i \(-0.458099\pi\)
0.991348 0.131257i \(-0.0419013\pi\)
\(884\) 2.17569 0.0731763
\(885\) 0 0
\(886\) −26.2507 −0.881910
\(887\) 16.8315 16.8315i 0.565148 0.565148i −0.365618 0.930765i \(-0.619142\pi\)
0.930765 + 0.365618i \(0.119142\pi\)
\(888\) 0 0
\(889\) 44.2286i 1.48338i
\(890\) −10.8072 + 18.6924i −0.362260 + 0.626569i
\(891\) 0 0
\(892\) 16.2812 + 16.2812i 0.545135 + 0.545135i
\(893\) 25.6733 + 25.6733i 0.859125 + 0.859125i
\(894\) 0 0
\(895\) 6.63439 1.77334i 0.221763 0.0592763i
\(896\) 2.14477i 0.0716517i
\(897\) 0 0
\(898\) 15.3837 15.3837i 0.513361 0.513361i
\(899\) 30.8075 1.02749
\(900\) 0 0
\(901\) 5.07689 0.169136
\(902\) −13.4777 + 13.4777i −0.448760 + 0.448760i
\(903\) 0 0
\(904\) 5.93272i 0.197319i
\(905\) −46.7702 + 12.5015i −1.55469 + 0.415562i
\(906\) 0 0
\(907\) 5.65337 + 5.65337i 0.187717 + 0.187717i 0.794708 0.606991i \(-0.207624\pi\)
−0.606991 + 0.794708i \(0.707624\pi\)
\(908\) 8.77490 + 8.77490i 0.291205 + 0.291205i
\(909\) 0 0
\(910\) 5.22265 9.03316i 0.173129 0.299446i
\(911\) 19.2205i 0.636802i −0.947956 0.318401i \(-0.896854\pi\)
0.947956 0.318401i \(-0.103146\pi\)
\(912\) 0 0
\(913\) −31.5683 + 31.5683i −1.04476 + 1.04476i
\(914\) −25.1322 −0.831301
\(915\) 0 0
\(916\) 6.47686 0.214001
\(917\) −18.1697 + 18.1697i −0.600017 + 0.600017i
\(918\) 0 0
\(919\) 19.1991i 0.633320i 0.948539 + 0.316660i \(0.102561\pi\)
−0.948539 + 0.316660i \(0.897439\pi\)
\(920\) 3.39039 + 12.6840i 0.111778 + 0.418180i
\(921\) 0 0
\(922\) 4.23355 + 4.23355i 0.139425 + 0.139425i
\(923\) 1.84984 + 1.84984i 0.0608882 + 0.0608882i
\(924\) 0 0
\(925\) −28.7902 7.75198i −0.946617 0.254884i
\(926\) 11.2558i 0.369890i
\(927\) 0 0
\(928\) −2.21657 + 2.21657i −0.0727623 + 0.0727623i
\(929\) 34.0772 1.11804 0.559018 0.829156i \(-0.311178\pi\)
0.559018 + 0.829156i \(0.311178\pi\)
\(930\) 0 0
\(931\) 20.7990 0.681659
\(932\) −7.07107 + 7.07107i −0.231621 + 0.231621i
\(933\) 0 0
\(934\) 30.2864i 0.991002i
\(935\) −10.5991 6.12803i −0.346629 0.200408i
\(936\) 0 0
\(937\) 10.6690 + 10.6690i 0.348541 + 0.348541i 0.859566 0.511025i \(-0.170734\pi\)
−0.511025 + 0.859566i \(0.670734\pi\)
\(938\) 6.13731 + 6.13731i 0.200390 + 0.200390i
\(939\) 0 0
\(940\) 8.11005 + 4.68894i 0.264521 + 0.152936i
\(941\) 46.7455i 1.52386i 0.647659 + 0.761930i \(0.275748\pi\)
−0.647659 + 0.761930i \(0.724252\pi\)
\(942\) 0 0
\(943\) 14.4533 14.4533i 0.470665 0.470665i
\(944\) −11.1574 −0.363142
\(945\) 0 0
\(946\) 49.6346 1.61376
\(947\) −19.5659 + 19.5659i −0.635806 + 0.635806i −0.949518 0.313712i \(-0.898427\pi\)
0.313712 + 0.949518i \(0.398427\pi\)
\(948\) 0 0
\(949\) 2.15378i 0.0699146i
\(950\) −41.8415 11.2661i −1.35752 0.365522i
\(951\) 0 0
\(952\) −1.51658 1.51658i −0.0491526 0.0491526i
\(953\) 29.6071 + 29.6071i 0.959068 + 0.959068i 0.999195 0.0401263i \(-0.0127760\pi\)
−0.0401263 + 0.999195i \(0.512776\pi\)
\(954\) 0 0
\(955\) 1.72305 + 6.44625i 0.0557567 + 0.208596i
\(956\) 6.84999i 0.221544i
\(957\) 0 0
\(958\) 1.76022 1.76022i 0.0568702 0.0568702i
\(959\) 21.1835 0.684051
\(960\) 0 0
\(961\) 65.5874 2.11572
\(962\) 9.17394 9.17394i 0.295780 0.295780i
\(963\) 0 0
\(964\) 29.4865i 0.949695i
\(965\) −9.31788 + 16.1163i −0.299953 + 0.518803i
\(966\) 0 0
\(967\) −29.7371 29.7371i −0.956280 0.956280i 0.0428039 0.999083i \(-0.486371\pi\)
−0.999083 + 0.0428039i \(0.986371\pi\)
\(968\) −13.4201 13.4201i −0.431338 0.431338i
\(969\) 0 0
\(970\) −28.7480 + 7.68420i −0.923042 + 0.246725i
\(971\) 9.67909i 0.310617i 0.987866 + 0.155308i \(0.0496371\pi\)
−0.987866 + 0.155308i \(0.950363\pi\)
\(972\) 0 0
\(973\) 5.38954 5.38954i 0.172781 0.172781i
\(974\) −2.07555 −0.0665050
\(975\) 0 0
\(976\) −4.75100 −0.152076
\(977\) 34.8100 34.8100i 1.11367 1.11367i 0.121020 0.992650i \(-0.461383\pi\)
0.992650 0.121020i \(-0.0386165\pi\)
\(978\) 0 0
\(979\) 52.8700i 1.68973i
\(980\) 5.18449 1.38579i 0.165612 0.0442674i
\(981\) 0 0
\(982\) −29.3812 29.3812i −0.937591 0.937591i
\(983\) −13.1207 13.1207i −0.418485 0.418485i 0.466196 0.884681i \(-0.345624\pi\)
−0.884681 + 0.466196i \(0.845624\pi\)
\(984\) 0 0
\(985\) −8.85898 + 15.3226i −0.282270 + 0.488219i
\(986\) 3.13470i 0.0998291i
\(987\) 0 0
\(988\) 13.3327 13.3327i 0.424170 0.424170i
\(989\) −53.2274 −1.69253
\(990\) 0 0
\(991\) 39.3459 1.24986 0.624932 0.780679i \(-0.285127\pi\)
0.624932 + 0.780679i \(0.285127\pi\)
\(992\) −6.94937 + 6.94937i −0.220643 + 0.220643i
\(993\) 0 0
\(994\) 2.57889i 0.0817974i
\(995\) 0.780110 + 2.91853i 0.0247311 + 0.0925236i
\(996\) 0 0
\(997\) −24.2104 24.2104i −0.766751 0.766751i 0.210782 0.977533i \(-0.432399\pi\)
−0.977533 + 0.210782i \(0.932399\pi\)
\(998\) −0.0864170 0.0864170i −0.00273548 0.00273548i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1530.2.m.h.647.1 16
3.2 odd 2 inner 1530.2.m.h.647.8 yes 16
5.3 odd 4 inner 1530.2.m.h.953.8 yes 16
15.8 even 4 inner 1530.2.m.h.953.1 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1530.2.m.h.647.1 16 1.1 even 1 trivial
1530.2.m.h.647.8 yes 16 3.2 odd 2 inner
1530.2.m.h.953.1 yes 16 15.8 even 4 inner
1530.2.m.h.953.8 yes 16 5.3 odd 4 inner