Defining parameters
| Level: | \( N \) | \(=\) | \( 15210 = 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 15210.o (of order \(4\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 15 \) |
| Character field: | \(\Q(i)\) | ||
| Sturm bound: | \(6552\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(15210, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 6776 | 620 | 6156 |
| Cusp forms | 6328 | 620 | 5708 |
| Eisenstein series | 448 | 0 | 448 |
Decomposition of \(S_{2}^{\mathrm{new}}(15210, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(15210, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(15210, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(390, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(585, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1170, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2535, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(5070, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(7605, [\chi])\)\(^{\oplus 2}\)