Properties

Label 1512.1.bn
Level $1512$
Weight $1$
Character orbit 1512.bn
Rep. character $\chi_{1512}(181,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $8$
Newform subspaces $3$
Sturm bound $288$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1512.bn (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 504 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 3 \)
Sturm bound: \(288\)
Trace bound: \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(1512, [\chi])\).

Total New Old
Modular forms 48 16 32
Cusp forms 24 8 16
Eisenstein series 24 8 16

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 8 0 0 0

Trace form

\( 8 q - 4 q^{4} + 4 q^{14} - 4 q^{16} - 4 q^{23} - 4 q^{25} - 4 q^{49} - 4 q^{50} + 4 q^{56} + 8 q^{64} - 4 q^{65} - 4 q^{92} + 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(1512, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1512.1.bn.a 1512.bn 504.an $2$ $0.755$ \(\Q(\sqrt{-3}) \) $D_{3}$ \(\Q(\sqrt{-14}) \) None 504.1.bn.a \(1\) \(0\) \(-1\) \(-1\) \(q+\zeta_{6}q^{2}+\zeta_{6}^{2}q^{4}+\zeta_{6}^{2}q^{5}-\zeta_{6}q^{7}+\cdots\)
1512.1.bn.b 1512.bn 504.an $2$ $0.755$ \(\Q(\sqrt{-3}) \) $D_{3}$ \(\Q(\sqrt{-14}) \) None 504.1.bn.a \(1\) \(0\) \(1\) \(-1\) \(q+\zeta_{6}q^{2}+\zeta_{6}^{2}q^{4}-\zeta_{6}^{2}q^{5}-\zeta_{6}q^{7}+\cdots\)
1512.1.bn.c 1512.bn 504.an $4$ $0.755$ \(\Q(\zeta_{12})\) $D_{6}$ \(\Q(\sqrt{-14}) \) None 504.1.bn.c \(-2\) \(0\) \(0\) \(2\) \(q+\zeta_{12}^{4}q^{2}-\zeta_{12}^{2}q^{4}+(\zeta_{12}+\zeta_{12}^{3}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(1512, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(1512, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(504, [\chi])\)\(^{\oplus 2}\)